Solving an integration equation with unknown kernel

  • Thread starter Thread starter dragon_chen
  • Start date Start date
  • Tags Tags
    Integration Kernel
dragon_chen
Messages
1
Reaction score
0
I am pondering over how to solve the following (seemingly nonstandard) integral equation.

Let h(t) be a known function which is non-negative, strictly increasing and satisfies that h(t) → 0 as t→-∞ and h(t)→1 as t→∞. Indeed, h(t) can be viewed as a cumulative distribution function for a continuous random variable.

Let K be a given positive integer. The problem is to find the function f(x) satisfying that

h(t) = ∫(F(t+x)^K)f(x)dx

where the integral is taken from -∞ to ∞, F is a functional of f and satisfies F(y)=∫f(x)dx where the integral is taken from -∞ to y. The function f to be solved is positive with support on the whole real line and is integrated to 1 over its support. Indeed, f is viewed as a density of a continuous random variable whose cumulative distribution function is F. There is a location constraint on the solution f that should satisfy that ∫xf(x)dx=0. Namely, the expectation of the random variable with density f should be zero.

The integral equation seems nonstandard since the kernel F(t+x) is unknown though it depends only on f.

Could anyone suggest how to deal with this problem ?

Thank you very much !
 
Mathematics news on Phys.org
dragon_chen said:
I am pondering over how to solve the following (seemingly nonstandard) integral equation.

What does the corresponding differential equation say? (I'm not implying that this is a good hint, I'm just curious.)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top