geno678
- 22
- 0
Solving an IVP using Laplace Transforms. HELP!
Ok I'm supposed to Solve this problem using Laplace Transforms.
\frac{d^2 x}{dt^2}+2\frac{dx}{dt}+x = 5e^{-2t} + t
Initial Conditions
x (0) = 2 ; \frac{dx}{dt} (0) = -3
so I transformed the the IVP and it looks like this
s^2 x(s) - s x(s) - x (0) + 2 x(s) - x(0) + x(s) = \frac{5}{s+2} + \frac {1}{s^2}
Then I plugged in my initial conditionss^2 x(s) + 3s - 2 + 2 x(s) - 2 + x(s) = \frac{5}{s+2} + \frac {1}{s^2}Then I factored the x(s) on the left side, and found a common denominator on the right side
s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5}{s+2} + \frac {1}{s^2}s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5}{s+2}*\frac {s^2}{s^2} + \frac {1}{s^2} *\frac {s+2}{s+2}
s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5s^2}{(s+2)s^2} + \frac {s+2}{(s^2)(s+2)}
s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5s^2 + s + 2}{(s+2)s^2}
(s^2 + 2s + 1) x(s) = \frac{5s^2 + s + 2}{(s+2)s^2} - 3s +4
Then I found x(s)
(s+1)(s+1) x(s) = \frac{5s^2 + s + 2}{(s+2)s^2} (- 3s +4)*\frac{(s+2)s^2}{(s+2)s^2}
(-3s +4)*(s^3 + 2s^2) = -3s^4 - 6s^3 + 4s^3 + 8s^2
x(s) = \frac{5s^2 + s + 2 -3s^4 - 6s^3 + 4s^3 + 8s^2 }{(s+2)(s^2)(s+1)^2}
x(s) = \frac{13s^2 + s + 2 -3s^4 -2s^3 }{(s+2)(s^2)(s+1)^2}
Now I used the heaviside theorem to find the residues.
x(s) = \frac{13s^2 + s + 2 -3s^4 -2s^3 }{(s+2)(s^2)(s+1)^2} = \frac{R1}{s} + \frac{R2}{s^2} + \frac{R3}{s+2} + \frac{R4}{(s+1)^2} + \frac{R5}{s+1}
Ok so here is where I'm stuck. Say I try to solve for R3.
R3 = (s+2) x(s) |s = -2 , \frac{13s^2 + s + 2 -3s^4 -2s^3 }{(s^2)(s+1)^2} | s = -2 ] = 5
Ok so I got the correct residue for R3, but now I'm stuck what do I do after this?
Ok I'm supposed to Solve this problem using Laplace Transforms.
\frac{d^2 x}{dt^2}+2\frac{dx}{dt}+x = 5e^{-2t} + t
Initial Conditions
x (0) = 2 ; \frac{dx}{dt} (0) = -3
so I transformed the the IVP and it looks like this
s^2 x(s) - s x(s) - x (0) + 2 x(s) - x(0) + x(s) = \frac{5}{s+2} + \frac {1}{s^2}
Then I plugged in my initial conditionss^2 x(s) + 3s - 2 + 2 x(s) - 2 + x(s) = \frac{5}{s+2} + \frac {1}{s^2}Then I factored the x(s) on the left side, and found a common denominator on the right side
s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5}{s+2} + \frac {1}{s^2}s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5}{s+2}*\frac {s^2}{s^2} + \frac {1}{s^2} *\frac {s+2}{s+2}
s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5s^2}{(s+2)s^2} + \frac {s+2}{(s^2)(s+2)}
s^2 x(s) + 2 x(s) + x(s) + 3s - 4 = \frac{5s^2 + s + 2}{(s+2)s^2}
(s^2 + 2s + 1) x(s) = \frac{5s^2 + s + 2}{(s+2)s^2} - 3s +4
Then I found x(s)
(s+1)(s+1) x(s) = \frac{5s^2 + s + 2}{(s+2)s^2} (- 3s +4)*\frac{(s+2)s^2}{(s+2)s^2}
(-3s +4)*(s^3 + 2s^2) = -3s^4 - 6s^3 + 4s^3 + 8s^2
x(s) = \frac{5s^2 + s + 2 -3s^4 - 6s^3 + 4s^3 + 8s^2 }{(s+2)(s^2)(s+1)^2}
x(s) = \frac{13s^2 + s + 2 -3s^4 -2s^3 }{(s+2)(s^2)(s+1)^2}
Now I used the heaviside theorem to find the residues.
x(s) = \frac{13s^2 + s + 2 -3s^4 -2s^3 }{(s+2)(s^2)(s+1)^2} = \frac{R1}{s} + \frac{R2}{s^2} + \frac{R3}{s+2} + \frac{R4}{(s+1)^2} + \frac{R5}{s+1}
Ok so here is where I'm stuck. Say I try to solve for R3.
R3 = (s+2) x(s) |s = -2 , \frac{13s^2 + s + 2 -3s^4 -2s^3 }{(s^2)(s+1)^2} | s = -2 ] = 5
Ok so I got the correct residue for R3, but now I'm stuck what do I do after this?
Last edited: