Solving Complex Integrals Using the Residue Theorem on Circular Contours

  • Thread starter Thread starter nickolas2730
  • Start date Start date
  • Tags Tags
    Complex
nickolas2730
Messages
28
Reaction score
0
1. Evaluate ∫C (z)/z2+9 dz , where C is the circle │z-2i│=4.

what i have done so far is :

z(t) = 2i + 4eit
z'(t) = 4ieit
f(z(t)) = 4ieit/(4ieit)2+9

∫ (4ieit/(4ieit)2+9) (4ieit) dt

intergrate from 0->2pi

but i don't know how to solve this intergral, can anyone help?

2. ∫c cos(z)/(z-1)^3(z-5)^2 dz , where C is the circle │z-4│=2.

this z'(t) = 0
so , is this intergral equal 0?
since f(z(t))(z'(t)) = 0


Thanks
 
Physics news on Phys.org
Shouldn't you be using the residue theorem to evaluate the integrals?

(Note that (1) has poles at ±i3, and (2) has poles at 1 & 5. Which of those lie within the given contours?)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top