1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Solving Cubic Functions

  1. Nov 19, 2009 #1
    x3 - 12x + 1 = 0

    How does one solve for x?
     
  2. jcsd
  3. Nov 19, 2009 #2

    Mark44

    Staff: Mentor

  4. Nov 20, 2009 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Let x= a- b. Then [itex]a^3= (a-b)^3= a^3- 3a^2b+ 3ab^2- b^3[/itex].

    Also [itex]3abx= 3ab(a- b)= 3a^2b- 3ab^2[/itex].

    So [itex]x^3+ 3abx= a^3- b^3[/itex]. Letting m= 3ab and [itex]n= a^3- b^3[/itex], then x= a-b satisfies [itex]x^3+ mx= n[/itex].

    Suppose we know m and n- can we "recover" a and b and so find x?

    If m= 3ab, then b= m/3a and [itex]n= a^3- m^3/3^3a^3[/itex]. Multiplying through by [itex]a^3[/itex] we get [itex]na^3= (a^3)^2- m^3/3^3[/itex] which we can think of as a quadratic equation for [itex]a^3[/itex]: [itex](a^3)^2- na^3- m^3/3^3= 0[/itex] and solve by the quadratic formula:
    [tex]a^3= \frac{n\pm\sqrt{n^2+ 4\frac{m^3}{m^3}}}{2}[/tex][tex]= \frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}[/tex]
    so that
    [tex]a= \sqrt[3]{\frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}}}[/tex]

    Since [itex]a^3- b^3= n[/itex], [itex]b^3= a^3- n[/itex] so
    [tex]b^3= -\frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}[/tex]
    and
    [tex]b= -\sqrt[3]{\frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}}}[/tex]
    and, of course, x= a- b.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Solving Cubic Functions
  1. Solving cubics (Replies: 10)

  2. Cubic Function (Replies: 2)

  3. Solving a cubic sort of! (Replies: 13)

Loading...