Petar Mali
- 283
- 0
Homework Statement
In delta potential barrier problem Schrodinger equation we get
\psi(x)=Ae^{kx}, x<0
\psi(x)=Ae^{-kx}, x>0
We must get solution of
lim_{\epsilon \rightarrow 0} \int^{\epsilon}_{-\epsilon}\frac{d^2\psi}{dx^2}dx
Homework Equations
The Attempt at a Solution
lim_{\epsilon \rightarrow 0} \int^{\epsilon}_{-\epsilon}\frac{d^2\psi}{dx^2}dx=lim_{\epsilon \rightarrow 0} \frac{d\psi}{dx}|^{\epsilon}_{-\epsilon} and get the solution
I can say that the whole function is
\psi(x)=Ae^{-k|x|}
I don't have first derivative in 0.
lim_{\epsilon \rightarrow 0} \int^{\epsilon}_{-\epsilon}\frac{d^2\psi}{dx^2}dx=lim_{\epsilon \rightarrow 0} \int^{0}_{-\epsilon}\frac{d^2\psi}{dx^2}dx+lim_{\epsilon \rightarrow 0} \int^{\epsilon}_{0}\frac{d^2\psi}{dx^2}dx=0Why I don't get same solution different then zero like in case
lim_{\epsilon \rightarrow 0} \int^{\epsilon}_{-\epsilon}\frac{d^2\psi}{dx^2}dx=lim_{\epsilon \rightarrow 0} \frac{d\psi}{dx}|^{\epsilon}_{-\epsilon}
?