Solving Derivative Problem: Find Constants A, B & C

  • Thread starter Thread starter temaire
  • Start date Start date
  • Tags Tags
    Derivative
temaire
Messages
275
Reaction score
0

Homework Statement


Find the constants A, B, and C such that the function y=Ax^{2}+Bx+C satisfies the differential equation y^{''}+y^{'}-2y=x^{2}.



The Attempt at a Solution


I know that y^{''}+y^{'}-2Ax^{2}-2Bx-2C=x^{2} and that y^{'}=2Ax+B and y^{''}=2A, but I'm really stuck at this point. Any help would be appreciated.
 
Physics news on Phys.org
almost there, substitute in for y & y'

each power of x will give you an equation that must be solved for the solution to satisfy teh differential equation

eg. the co-efficients of x^1 must add up to zero
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top