jamesbob
- 63
- 0
Hey, just want to check iv done these questions right so far...
\mbox{Find the general solution to} \frac{dy}{dx} = y^2xcos(2x) \mbox{giving explicitly in terms of x.}
\mbox{Find the particular solution satisfying y(0) = -1}
My answer:
\frac{dy}{y^2} = x\cos(2x)dx \Rightarrow \int\frac{dy}{y^2} = \intx\cos(2x)dx
u = x
\frac{du}{dx} = 1
\frac{dv}{dx} = \cos2x
v = \frac{1}{2}\sin(2x)}
\Rightarrow \frac{xsinx}{2} - \frac{1}{2}\int\sin(2x) = \frac{x\sinx}{2} + \frac{1}{4}\cos(2x) + C
So we have
\frac{-1}{y} = \frac{x\sin(x)}{2} + \frac{1}{4}\cos(2x) + C
So
y = \frac{-4}{\cos(2x)} - \frac{2}{x\sin(2x)} + C
\mbox{at y(0) = -1 \Rightarrow 1 = \frac{-4}{1} - \frac{2}{0} + C \Rightarrow C = 5}
So overall,
y = \frac{-2}{x\sin(2x)} - \frac{4}{\cos(2x)} + 5}.
\mbox{Find the general solution to} \frac{dy}{dx} = y^2xcos(2x) \mbox{giving explicitly in terms of x.}
\mbox{Find the particular solution satisfying y(0) = -1}
My answer:
\frac{dy}{y^2} = x\cos(2x)dx \Rightarrow \int\frac{dy}{y^2} = \intx\cos(2x)dx
u = x
\frac{du}{dx} = 1
\frac{dv}{dx} = \cos2x
v = \frac{1}{2}\sin(2x)}
\Rightarrow \frac{xsinx}{2} - \frac{1}{2}\int\sin(2x) = \frac{x\sinx}{2} + \frac{1}{4}\cos(2x) + C
So we have
\frac{-1}{y} = \frac{x\sin(x)}{2} + \frac{1}{4}\cos(2x) + C
So
y = \frac{-4}{\cos(2x)} - \frac{2}{x\sin(2x)} + C
\mbox{at y(0) = -1 \Rightarrow 1 = \frac{-4}{1} - \frac{2}{0} + C \Rightarrow C = 5}
So overall,
y = \frac{-2}{x\sin(2x)} - \frac{4}{\cos(2x)} + 5}.
Last edited by a moderator: