Solving Equality Problem in Complex Numbers

  • Thread starter Thread starter kelvin490
  • Start date Start date
  • Tags Tags
    Complex numbers
kelvin490
Gold Member
Messages
227
Reaction score
3
Suppose we have two equation x1=Aeiωt + Be-iωt and x2=A*e-iωt + B*eiωt . Where A and B are complex number and A* B* are their conjugate correspondingly.

Now if we want to make x1 and x2 exactly equivalent all the time, one way to do it is to have A=B* and B=A* so that x1 and x2 are equivalent. However, if we don't do it by this approach but instead set (A-B*)eiωt=(A*-B)e-iωt, then we have ei2ωt=(A*-B)/(A-B*). I would like to ask if the A and B chosen can satisfy this criteria (even A≠B* and B≠A*), can we still say that x1 ≡ x2 ?

Another thing trouble me is if A=B* and B=A* , then ei2ωt=(A*-B)/(A-B*)=0/0 which is undefined. What causes this problem?
 
Last edited:
Mathematics news on Phys.org
kelvin490 said:
Suppose we have two equation x1=Aeiωt + Be-iωt and x2=A*e-iωt + B*eiωt . Where A and B are complex number and A* B* are their conjugate correspondingly.

Now if we want to make x1 and x2 exactly equivalent all the time, one way to do it is to have A=B* and B=A* so that x1 and x2 are equivalent. However, if we don't do it by this approach but instead set (A-B*)eiωt=(A*-B)e-iωt, then we have ei2ωt=(A*-B)/(A-B*). I would like to ask if the A and B chosen can satisfy this criteria (even A≠B* and B≠A*), can we still say that x1 ≡ x2 ?
What you are doing is saying that if Ae^{i\omega t}+ Be^{-i\omega t}= A^*e^{-i\omega t}+ B^*e^{-i\omega t} then we must have e^{2i\omega t}= \frac{A^*- B}{A- B^*}. However, the right side of that equation is a constant, independent of t. In order for that to be true, the left side must also be a constant- so what you are doing is equivalent to assuming that \omega= 0, a very restrictive condition!

Another thing trouble me is if A=B* and B=A* , then ei2ωt=(A*-B)/(A-B*)=0/0 which is undefined. What causes this problem?
If A= B^* then B must equal A^*- that is not a distinct condition. And in that case you are saying x_1= Ae^{i\omega t}+ A*e^{-i\omega t} and x_2= A*e^{-i\omega t}+ Ae^{i\omega t}, that is, that x_1= x_2 for all t. That is exactly what you said you wanted. There is no "problem". If you have two identical equation, say "px= qy" and "px= qy" and subtract them you get 0x= 0y, of course. It would make no sense to try to "solve for y" in that case, you would just get 0/0 as happens here.
 
The two orignal expressions are complex conjugates of each other. Therefore to be equal, the imaginary part must be 0.
 
I think the concept of linear independence can help. Since e-iωt and eiωt are two linearly independent variables, the coefficient of x1 and x2 must be equal so that x1 and x2 are equivalent.

Also from (A-B*)ei2ωt=(A*-B) we can see that the left hand side is a time dependent function (let's say t is time) and the other side is a constant. The only way to make both sides equal all the time is to have A=B* and B=A*.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top