Solving for the Kinetic Energy of a Uniform Disk

AI Thread Summary
The discussion focuses on calculating the total kinetic energy of a solid uniform disk rolling without slipping and determining the minimum height of a step that prevents it from rolling past. The total kinetic energy is derived from both translational and rotational components, with the correct total calculated as 0.444 Joules. To find the height of the step, energy conservation principles are applied, leading to the equation h = Vo^2 / (2g), where Vo represents the initial velocity. The importance of including both translational and rotational kinetic energy in the calculations is emphasized. The discussion highlights the need for careful application of energy conservation in solving the problem.
kenricktan
Messages
3
Reaction score
0

Homework Statement


A solid, Uniform disk of radius 5.00 cm and mass 1.50 kg is rolling without slipping a long a horizontal surface. The disk makes 2.00 revolution per second

a. Find the total kinetic energy (translational + rotational) of the disk

b. Find the minimum height h of the step (placed in front of the rolling disk) that will prevent the disk from rolling past it. (Hint: assume that the hight h is adjusted so that the disk rolls just up to the top of the step and stops. Conserve Energy)


Homework Equations


W= 2.00 Revolution x 2pi radian
V = wr
I = (1/2)mr^2
KE_rot = (1/2)Iw^2
KE = (1/2)mv^2


The Attempt at a Solution


a. I assumed that K_total = KE_rot + KE
K_total = 4.46 x 10^-3 Joules

b. I have no Idea how to solve this...help?
 
Physics news on Phys.org
Correction!
a. K_Total = 0.444 J
 
The height must be such that energy will be conserved between the initial translational and rotational velocity and the final trans/rot velocity. Ktotal(0) + U(0) = Ktotal(1) + U(1)

I'd begin by drawing a picture. What does the final total Kinetic energy have to be?
 
I tried using 1/2 m Vo^2 + mgh(o) = 1/2 m V1^2 + mgh(1)

and since it says that assuming that it "stops" at the top of the step so I set V1 = 0
and also h(o) = 0

cancels all of the m
so I get h1 = Vo^2 / 2g
Is that right?
 
kenricktan said:
I tried using 1/2 m Vo^2 + mgh(o) = 1/2 m V1^2 + mgh(1)

OK let's stop right here for a sec. 1/2 * Vo^2 is the translational kinetic energy, but you also need to include the rotational kinetic energy because the object is rotating as well as moving forward.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top