I Solving for the Missing Factor: Jumping into a Non-Rotating Black Hole

  • I
  • Thread starter Thread starter cozycoz
  • Start date Start date
  • Tags Tags
    Black hole Hole
cozycoz
Messages
13
Reaction score
1
I'm reading Lambourne's <Relativity, Gravitation and Cosmology>, and I cannot get a result the book describes. It's on equation (6.7) in 173p.

When a person free-falls into a non-rotating black hole from ##r=r_0## to some position ##r=r'##, the proper time becomes
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}+\sqrt{\frac{r'}{r_0}(1-\frac{r'}{r_0})}+\arctan(-\sqrt{\frac{r'}{r_0-r'}})].$$

Now we can simplify the above by taking the limits of ##r_0>>r'##.
First, using ##\arctan{x}=x+O(x^3)##,
$$\arctan(-\sqrt{\frac{r'}{r_0-r'}})=-\sqrt{\frac{r'}{r_0-r'}}+O[(-\sqrt{\frac{r'}{r_0-r'}})^3],$$
and here, for
$$\sqrt{\frac{r'}{r_0-r'}}=\sqrt{\frac{\frac{r'}{r_0}}{1-\frac{r'}{r_0}}} << 1,$$
we can ignore ##O(x^3)##. Then
$$\sqrt{\frac{r'}{r_0}(1-\frac{r'}{r_0})}+\arctan(-\sqrt{\frac{r'}{r_0-r'}})$$ $$≈\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}+\sqrt{\frac{r'}{r_0}}(1-\frac{r'}{r_0})^{\frac{1}{2}}-\sqrt{\frac{r'}{r_0}}(1-\frac{r'}{r_0})^{-\frac{1}{2}}].$$

By using
$$(1-\frac{r'}{r_0})^{\frac{1}{2}}≈1-\frac{r'}{r_0}$$ $$(1-\frac{r'}{r_0})^{-\frac{1}{2}}≈1+\frac{r'}{r_0},$$
I get
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}-(\frac{r'}{r_0})^{\frac{3}{2}}].$$
This is my result, but the book says

$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}-\frac{2}{3}(\frac{r'}{r_0})^{\frac{3}{2}}].$$

Where did the factor ##\frac{2}{3}## come from?
 
Physics news on Phys.org
$$(1-\frac{r'}{r_0})^{\frac{1}{2}}≈1-\frac{r'}{r_0}$$ This is missing a factor 1/2 for the fraction on the right side. Same for the following equation.

You probably have to consider the x3 term of the arctan. The leading term of the argument to the third power has the same power as your result.
 
cozycoz said:
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}-\frac{2}{3}(\frac{r'}{r_0})^{\frac{3}{2}}].$$

There's something strange about that result. An alternative derivation of the ##r_0 \gg r_S## case is as follows:

Start with the equation:

##(\frac{dr}{d\tau})^2 = c^2 [ \frac{E}{mc^2} - 1 + \frac{r_s}{r}]##

##E## turns out to be the constant value of the expression ##mc^2 (1 - \frac{r_s}{r}) \frac{dt}{d\tau}##. If the object drops from ##r_0 \gg r_S##, then ##E \approx mc^2##. So the equation simplifies to:

##(\frac{dr}{d\tau})^2 = c^2 [ \frac{r_s}{r}]##

This has the exact solution:

##\tau = \frac{r_0}{c} \sqrt{\frac{r_0}{r_S}} (1 - (\frac{r}{r_0})^{\frac{3}{2}})##

There is no ##\pi/2##. With the choice ##E = mc^2##, there is no trigonometric functions involved, it's just rational powers of ##r##.

One way to see that this equation works is that in the limit ##r \rightarrow r_0##, ##\tau \rightarrow 0##.
 
mfb said:
$$(1-\frac{r'}{r_0})^{\frac{1}{2}}≈1-\frac{r'}{r_0}$$ This is missing a factor 1/2 for the fraction on the right side. Same for the following equation.

You probably have to consider the x3 term of the arctan. The leading term of the argument to the third power has the same power as your result.
I omitted ##\frac{1}{2}## only here. I actually calculated with it so it changes nothing, sorry for the mistake!

But I've done considering ##x^3## term and got ##\frac{2}{3}## factor. Thank you!
 
  • Like
Likes mfb
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top