Solving for y: Where Did My Calculations Go Wrong?

  • Thread starter Thread starter asdf1
  • Start date Start date
asdf1
Messages
734
Reaction score
0
for the following question:
y`+2y=y^2

my problem:
suppose u=1/y
so u`=-[y^(-2)]*y`=-1+2u
so du/(1+2u)=-dx
=>1+2u=ce^(-x)
=>u=[1-ce^(-x)]/2
so y=1/u=2/[1-ce^(-x)]

but the correct answer should be y=x/[1+2cx^(2x)]
does anybody know where my calculations went wrong?
 
Physics news on Phys.org
asdf1 said:
for the following question:
y`+2y=y^2
my problem:
suppose u=1/y
so u`=-[y^(-2)]*y`=-1+2u
so du/(1+2u)=-dx
=>1+2u=ce^(-x)

=>u=[1-ce^(-x)]/2
so y=1/u=2/[1-ce^(-x)]
but the correct answer should be y=x/[1+2cx^(2x)]
does anybody know where my calculations went wrong?

missed out dividing by 2 when integrating.

so du/(1+2u)=-dx
(1/2)ln(1+2u) = -x +lnC
ln(1+2u) = -2x + lnC²
ln{(1+2u)/C²} = -2x
1+ 2u = C²e^(-2x)
=>1+2u=ce^(-2x)
 
opps~ thanks! :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top