- 1,753
- 143
evaluate \int_0^{33} {\left( {x - 1} \right)^{ - 1/5} } \,dx
The back of the book gives 75/4 as the answer. I get 80/4. It has an asymptote at 1 since 0^(-1/5) DNE, and 0.00000001^(1/5) equals a number that grows larger as I add more 0's.
But any time I try to raise a negative number ^(1/5) I get an error. It just doesn't seem like 0-1 is in the Domain of this function. Even when I graph it, I see it shoot down from the x=1 asymptote, and then make a hard turn right as it approaches the x-axis. I don't see any Range in this function below x=1.
But somehow, the integral from 0 to 1 must equal -5/4 for my answer to match the back of the book's.
Here's my effort:
<br /> \begin{array}{l}<br /> \int_0^{33} {\left( {x - 1} \right)^{ - 1/5} } \,dx \\ <br /> \\ <br /> \,\,\,\,\,\,\,\,\,\,u = x - 1,\,\,\frac{{du}}{{dx}} = 1,\,\,dx = du \\ <br /> \\ <br /> \int_*^* {u^{ - 1/5} } \,du = \mathop {\lim }\limits_{t \to 0^ + } \int_*^* {u^{ - 1/5} } \,du \\ <br /> \\ <br /> \mathop {\lim }\limits_{t \to 0^ + } \left. {\frac{{u^{4/5} }}{{4/5}}} \right|_*^* \,\, = \,\,\mathop {\lim }\limits_{t \to 0^ + } \left. {\frac{{u^{4/5} }}{{4/5}}} \right|_*^* \left. { = \mathop {\lim }\limits_{t \to 0^ + } \frac{{5\left( {x - 1} \right)^{4/5} }}{4}} \right|_t^{33} = \mathop {\lim }\limits_{t \to 0^ + } \left[ {\left( {\frac{{5\left( {33 - 1} \right)^{4/5} }}{4}} \right) - \left( {\frac{{5\left( {t - 1} \right)^{4/5} }}{4}} \right)} \right] = \\ <br /> \\ <br /> \left( {\frac{{5\left( {33 - 1} \right)^{4/5} }}{4}} \right) - \left( {\frac{{5\left( {0^ + - 1} \right)^{4/5} }}{4}} \right) = \frac{{5 \cdot 16}}{4} - \frac{{5\left( { - 1} \right)^{4/5} }}{4} = \frac{{80}}{4} - \frac{{5\left( { - 1} \right)^{4/5} }}{4} \\ <br /> \end{array}<br />
But here's my problem.
If <br /> \frac{{5\left( { - 1} \right)^{4/5} }}{4}=\frac{5}{4} then I'd have the right answer.
The back of the book gives 75/4 as the answer. I get 80/4. It has an asymptote at 1 since 0^(-1/5) DNE, and 0.00000001^(1/5) equals a number that grows larger as I add more 0's.
But any time I try to raise a negative number ^(1/5) I get an error. It just doesn't seem like 0-1 is in the Domain of this function. Even when I graph it, I see it shoot down from the x=1 asymptote, and then make a hard turn right as it approaches the x-axis. I don't see any Range in this function below x=1.
But somehow, the integral from 0 to 1 must equal -5/4 for my answer to match the back of the book's.
Here's my effort:
<br /> \begin{array}{l}<br /> \int_0^{33} {\left( {x - 1} \right)^{ - 1/5} } \,dx \\ <br /> \\ <br /> \,\,\,\,\,\,\,\,\,\,u = x - 1,\,\,\frac{{du}}{{dx}} = 1,\,\,dx = du \\ <br /> \\ <br /> \int_*^* {u^{ - 1/5} } \,du = \mathop {\lim }\limits_{t \to 0^ + } \int_*^* {u^{ - 1/5} } \,du \\ <br /> \\ <br /> \mathop {\lim }\limits_{t \to 0^ + } \left. {\frac{{u^{4/5} }}{{4/5}}} \right|_*^* \,\, = \,\,\mathop {\lim }\limits_{t \to 0^ + } \left. {\frac{{u^{4/5} }}{{4/5}}} \right|_*^* \left. { = \mathop {\lim }\limits_{t \to 0^ + } \frac{{5\left( {x - 1} \right)^{4/5} }}{4}} \right|_t^{33} = \mathop {\lim }\limits_{t \to 0^ + } \left[ {\left( {\frac{{5\left( {33 - 1} \right)^{4/5} }}{4}} \right) - \left( {\frac{{5\left( {t - 1} \right)^{4/5} }}{4}} \right)} \right] = \\ <br /> \\ <br /> \left( {\frac{{5\left( {33 - 1} \right)^{4/5} }}{4}} \right) - \left( {\frac{{5\left( {0^ + - 1} \right)^{4/5} }}{4}} \right) = \frac{{5 \cdot 16}}{4} - \frac{{5\left( { - 1} \right)^{4/5} }}{4} = \frac{{80}}{4} - \frac{{5\left( { - 1} \right)^{4/5} }}{4} \\ <br /> \end{array}<br />
But here's my problem.
If <br /> \frac{{5\left( { - 1} \right)^{4/5} }}{4}=\frac{5}{4} then I'd have the right answer.
Last edited: