suspenc3
- 400
- 0
Hi, IM having trouble with this topic..this is probly all wrong, but any help would be appreciated:
\int_{0}^{1} \sqrt{x^2 +1}dx
so let
x=tanØ
dx=sec^2Ø
\sqrt{x^2+1} = \sqrt{tan^2Ø+ 1} = sec^2Ø
when x=0 tanØ = 0 so tanØ = 0
when x=1 tanØ =\frac{\pi}{4}[/itex]<br /> <br /> let u= cosØ<br /> du=-sinØ<br /> <br /> \int_{0}^{\frac{\pi}{4}} sec^2ØdØ=<br /> <br /> \int_{0}^{\frac{\pi}{4}} \frac{1}{cos^2Ø}dØ=<br /> <br /> -\int_{0}^{\frac{\pi}{4}} \frac{du}{u^2}dØ<br /> <br /> when Ø = 0 u = 1<br /> when Ø = pi/4, u=root2/2<br /> <br /> ..i end up with an answer of 1-(root2/2)
\int_{0}^{1} \sqrt{x^2 +1}dx
so let
x=tanØ
dx=sec^2Ø
\sqrt{x^2+1} = \sqrt{tan^2Ø+ 1} = sec^2Ø
when x=0 tanØ = 0 so tanØ = 0
when x=1 tanØ =\frac{\pi}{4}[/itex]<br /> <br /> let u= cosØ<br /> du=-sinØ<br /> <br /> \int_{0}^{\frac{\pi}{4}} sec^2ØdØ=<br /> <br /> \int_{0}^{\frac{\pi}{4}} \frac{1}{cos^2Ø}dØ=<br /> <br /> -\int_{0}^{\frac{\pi}{4}} \frac{du}{u^2}dØ<br /> <br /> when Ø = 0 u = 1<br /> when Ø = pi/4, u=root2/2<br /> <br /> ..i end up with an answer of 1-(root2/2)
Last edited by a moderator: