Solving Integration of Wave Equation for x|Psi|^2

  • Thread starter Thread starter diewlasing
  • Start date Start date
diewlasing
Messages
14
Reaction score
0
where the wave equation is Psi_n = sqrt(2/a)sin(n*pi*x/a). When you do the integral of -inf to +inf of x|Psi|^2, the CRC handbook works it out to be:

(x^2)/4 - (xsin(2ax))/4a - cos(2ax)/(8a^2).

And I know the solution works out to be a/2 somehow but I don't know how to get it. I worked it down to:

ax - 2sin(2ax) - 2/ax = 0. I don't know if this is the right track. Can someone shed some light on this?
Thanks in advance.
 
Physics news on Phys.org
diewlasing said:
where the wave equation is Psi_n = sqrt(2/a)sin(n*pi*x/a). When you do the integral of -inf to +inf of x|Psi|^2, the CRC handbook works it out to be:

(x^2)/4 - (xsin(2ax))/4a - cos(2ax)/(8a^2).

And I know the solution works out to be a/2 somehow but I don't know how to get it. I worked it down to:

ax - 2sin(2ax) - 2/ax = 0. I don't know if this is the right track. Can someone shed some light on this?



Thanks in advance.

Don't integrate from minus inifnity to plus infinity. The wavefunction you give is valid only inside the well. Outside the well, the wavefunction is zero. So integrate over the width of the well only.
 
right my fault, but the integral works out to be:

(x^2)/4 - (xsin(2ax))/4a - cos(2ax)/(8a^2)

My question is how does that simplify to a/2?
 
diewlasing said:
right my fault, but the integral works out to be:

(x^2)/4 - (xsin(2ax))/4a - cos(2ax)/(8a^2)

My question is how does that simplify to a/2?

This can't be right since it does not have the dimensions of a length. Even worse, all the terms don't have the same dimensions. So check your calculation carefully.
 
Where did all the factors of n\pi go? Those will help when simplifying
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top