Solving Light Refraction Boundary Conditions: Find T^-1

drcrabs
Messages
47
Reaction score
0
Can someone please help me with this question:

Light with frequency \omega in media 1 ,with refractive index n_{1} , is incident (normal) to an interface of media 2, with refractive index n_{2}, and then is incident on a second interface with refractive index n_{3}. Using boundary conditions show that the transmission coefficient is:

T^{-1} = \frac{1}{4n_1n_3} ((n_1+n_3)^2 + \frac{(n_1^2-n_2^2)(n_3^2-n_2^2)}{n_2^2} Sin(\frac{n_2d\omega}{c}))

So basically light starts in one media and passes though two different media and we get the above as the transmission coefficient
 
Last edited:
Physics news on Phys.org
If I understand correctly, T is what comes out the n2 area, to n3 and infinity?
The point in this question is this:
1. find the genreal Fresnel Coefficients for reflection and transmition between two medias (you can find it around page 306 in Jackson 3re ed.).
2. Now look at your own wave - it is transmitted into n2, some passes into n3 but some reflects from the n2-n3 boundary back to n2, some passes back to n1 and some again is reflected to n3. The wave is reflected an infinite amount of times and there is an infinite sum involved of all the transmitted waves. Luckily, it's a geometric series.
P.S you must assume the media is non-magnetic to get this expression.
3. Don't forget the phase added to the wave while passing n2.
 
Last edited:
That problem is worked out on page 285 of Franklin "Classical Electromagnetism". The sin should be sin^2.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top