drcrabs
- 47
- 0
Can someone please help me with this question:
Light with frequency \omega in media 1 ,with refractive index n_{1} , is incident (normal) to an interface of media 2, with refractive index n_{2}, and then is incident on a second interface with refractive index n_{3}. Using boundary conditions show that the transmission coefficient is:
T^{-1} = \frac{1}{4n_1n_3} ((n_1+n_3)^2 + \frac{(n_1^2-n_2^2)(n_3^2-n_2^2)}{n_2^2} Sin(\frac{n_2d\omega}{c}))
So basically light starts in one media and passes though two different media and we get the above as the transmission coefficient
Light with frequency \omega in media 1 ,with refractive index n_{1} , is incident (normal) to an interface of media 2, with refractive index n_{2}, and then is incident on a second interface with refractive index n_{3}. Using boundary conditions show that the transmission coefficient is:
T^{-1} = \frac{1}{4n_1n_3} ((n_1+n_3)^2 + \frac{(n_1^2-n_2^2)(n_3^2-n_2^2)}{n_2^2} Sin(\frac{n_2d\omega}{c}))
So basically light starts in one media and passes though two different media and we get the above as the transmission coefficient
Last edited: