izen
- 50
- 0
^{}
lim _{x\rightarrow\infty} \left(cos\frac{1}{x}\right)^{x}
find the limit using L' Hopital's Rule
1^{\infty} >> change form to 0/0 by taking ln both sides
ln(y) = lim _{x\rightarrow\infty} x ln \left(cos\frac{1}{x}\right)
ln(y) = lim _{x\rightarrow\infty} \frac{ln \left(cos\frac{1}{x}\right)}{\frac{1}{x}} ===> 0/0
Apply L' Hopital's Rule
ln(y) = lim _{x\rightarrow\infty} \frac{\frac{1}{cos\frac{1}{2}}(-sin\frac{1}{x})}{\frac{-1}{x^{2}}} ===> 0/0
the next step do i have to apply L' Hopital's Rule again or just rearrange the fraction and take exponential both sides.
please help thank you
Homework Statement
lim _{x\rightarrow\infty} \left(cos\frac{1}{x}\right)^{x}
find the limit using L' Hopital's Rule
Homework Equations
The Attempt at a Solution
1^{\infty} >> change form to 0/0 by taking ln both sides
ln(y) = lim _{x\rightarrow\infty} x ln \left(cos\frac{1}{x}\right)
ln(y) = lim _{x\rightarrow\infty} \frac{ln \left(cos\frac{1}{x}\right)}{\frac{1}{x}} ===> 0/0
Apply L' Hopital's Rule
ln(y) = lim _{x\rightarrow\infty} \frac{\frac{1}{cos\frac{1}{2}}(-sin\frac{1}{x})}{\frac{-1}{x^{2}}} ===> 0/0
the next step do i have to apply L' Hopital's Rule again or just rearrange the fraction and take exponential both sides.
please help thank you