Solving Limits with L'Hopital's Rule: Differentiating tan^-1(x-pi/4) for x->1

  • Thread starter Thread starter JFonseka
  • Start date Start date
  • Tags Tags
    Limits
JFonseka
Messages
117
Reaction score
0

Homework Statement


lim
x->1 \frac{tan^{-1} (x - pi/4)}{x -1}

Homework Equations


None that I know of


The Attempt at a Solution


Indeterminate form, so use L'Hopital's rule

Differentiate the top, then differentiate the bottom.
The differential of the denominator is just 1.
However I have no idea how to differentiate the numerator.

Thanks for any help
 
Physics news on Phys.org
derivative of arctan(u) is: 1/(1+u^2)
 
Last edited:
\frac{d}{dx}tan^{-1} (x) = \frac {1}{x^2+1}
 
Thanks guys.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top