Solving Linear Equation: (x,y,z)=(a,a,b)+(c,d,d)

  • Thread starter Thread starter annoymage
  • Start date Start date
  • Tags Tags
    Linear
annoymage
Messages
360
Reaction score
0

Homework Statement



(x,y,z)=(a,a,b)+(c,d,d)

to make (a,a,b)+(c,d,d) in terms of x,y,z

Homework Equations



n/a

The Attempt at a Solution



(x,y,z)=(a+c,a+d,b+d)

then

a=c-x=d-y

b=z-d

c=x-a

d=z-b

,,,

there's no free independent variable if i want to use parametric, it only make it tedious T_T,

gimme any clue
 
Physics news on Phys.org
hey wait,

can i use like this

a+0b+c+0d=x
a+0b+0c+d=y
0a+b+0c+d=z

try to turn it in row echelon form, let me try first hoho
 
nop, i still can't find independent variable, help anyone
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top