Gregg
- 452
- 0
Homework Statement
Prove that the equation
\left(<br /> \begin{array}{ccc}<br /> 1 & 2 & -3 \\<br /> 2 & 6 & -11 \\<br /> 1 & -2 & 7<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right)=\left(<br /> \begin{array}{c}<br /> a \\<br /> b \\<br /> c<br /> \end{array}<br /> \right)
Is only soluble if c+2b-5a=0
(b) Hence show the planes
x+2y-3z=1
2x+6y-11z=2
x-2y+7z=1
Intersect in a line.
(c) Find in terms of s, the co-ordinate of the point in whihc this line meets the plane z=s.
The Attempt at a Solution
<br /> \text{Det}\left[\left(<br /> \begin{array}{ccc}<br /> 1 & 2 & -3 \\<br /> 2 & 6 & -11 \\<br /> 1 & -2 & 7<br /> \end{array}<br /> \right)\right]=0
x+2y-3z=a
2x+6y-11z=b
x-2y+7z=c
c+2b-5a = x-2y+7z + 2(2x+6y-11z) -5(x+2y-3z)=0
Not sure whether this is sufficient?
(b)
2x+4y-6z=2
2x+6y-11z=2
y=\frac{5}{2}z
x=1-2z
z=\lambda
x=1-2\lambda, y=\frac{5}{2}\lambda
What is the vector equation of this result if it is correct?
r = \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 0 \\<br /> 0<br /> \end{array}<br /> \right) + \lambda\left(<br /> \begin{array}{c}<br /> -2 \\<br /> \frac{5}{2} \\<br /> 1<br /> \end{array}<br /> \right)
Is that right?
(c) Substitute z=s
(1-2s,\frac{5s}{2},s)