MHB Solving Math Induction: Step-by-Step Guide

  • Thread starter Thread starter delc1
  • Start date Start date
  • Tags Tags
    Induction
delc1
Messages
9
Reaction score
0
Could anyone please help with this question regarding mathematical induction;

View attachment 2667

step by step procedure/ solution would be greatly appreciated. Thanks!
 

Attachments

  • Untitled.jpg
    Untitled.jpg
    8.5 KB · Views: 106
Physics news on Phys.org
delc1 said:
Could anyone please help with this question regarding mathematical induction;

View attachment 2667

step by step procedure/ solution would be greatly appreciated. Thanks!

Let suppose that...

$\displaystyle 3| \{n\ (n^{2} + 5)\} \implies n\ (n^{2} + 5) = 3\ k\ (1)$

In thi case is...

$\displaystyle (n+1)\ (n^{2} + 2\ n + 6) = n^{3} + 5\ n + 3\ n^{2} + 3\ n + 6 = 3\ k + 3\ n^{2} + 3\ n + 6 \ (2)$

... and clearly 3 devides the (2). For n=1 $\displaystyle n\ (n^{2} + 5) = 6$ so that...

Kind regards

$\chi$ $\sigma$
 
Still not quite sure what you mean?

I know how to do the base step, but the induction step is challenging
 
I think your difficulty is not with this problem in particular, but with applying induction in general. Therefore, ideally you should get a description of proof by induction and ask questions about that, possibly using the example you gave. For example, "I am not sure how to state the induction hypothesis in this problem. Is the following correct?"

For an outline of induction proof, see https://driven2services.com/staging/mh/index.php?posts/45490/.
 
delc1 said:
Still not quite sure what you mean?

I know how to do the base step, but the induction step is challenging

For the inductive step, I would let:

$$f(n)=n\left(n^2+5\right)$$

And then consider adding:

$$f(n+1)-f(n)$$

to both sides. Add this as is to the left side of your hypothesis, and add the simplified form to the right, and you should find your proof is complete.
 
I'd like to make it clear to you what you have to do, in order to prove this by induction.

First, we ASSUME it is true for $n$, that is we assume:

$n^2(n+5) = 3k$, for some integer $k$ (we don't have to really know which one).

Let's re-write this in a form that will be more easy to "spot" later on:

$n^3 + 5n = 3k$.

We need to USE this somehow, to prove that under these circumstances for $n+1$:

$(n+1)^2((n+1) + 5) = 3k'$ (again, all we need to do is show $k'$ exists, we do not need to find it specifically).

Let's re-write this in a form that will be more helpful to us:

$(n+1)^3 + 5(n+1) = 3k'$ <---this is what we want to prove.

I suggest multiplying out the left-hand side, and see if you "recognize" some part of it (like maybe the part we use in our assumption (induction hypothesis)). What can you say about what's "left over"?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top