Solving Metric Tensor Problems: My Attempt at g_μν for (2)

WWCY
Messages
476
Reaction score
14
Homework Statement
Derive the metric tensors for the following spacetimes, need help with (1)
Relevant Equations
##ds^2 = g_{\mu \nu} dX^{\mu} dX^{\nu}##
Screenshot 2019-08-26 at 4.17.38 PM.png


My attempt at ##g_{\mu \nu}## for (2) was
\begin{pmatrix}
-(1-r^2) & 0 & 0 & 0 \\ 0 &\frac{1}{1-r^2} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2(\theta)
\end{pmatrix}

and the inverse is the reciprocal of the diagonal elements.

For (1) however, I can't even think of how to write the vector ##X^{\mu}##; what exactly are ##U,V##?

Also, what does the question mean by "one of them could describe Minkowski spacetime"? At first glance, the metric tensor for (1) is non-diagonal, which I think rules it out. The metric for (2) is diagonal, and appears to approach the Minkowski metric in the small ##r## limit, which I'm guessing is the answer.

Thanks in advance!
 
Physics news on Phys.org
Cross-terms in the interval means off-diagonal terms in the metric :)
 
Thanks for the responses!

So by setting ##X^{\mu} = (U = y-t , x, V = y+t, z)## and expanding according to the line element expansion given above, I find that this form of spacetime reduces to Minkowski spacetime if ##g_{20} + g_{02} = 1##, is this right?
 
WWCY said:
Thanks for the responses!

So by setting ##X^{\mu} = (U = y-t , x, V = y+t, z)## and expanding according to the line element expansion given above, I find that this form of spacetime reduces to Minkowski spacetime if ##g_{20} + g_{02} = 1##, is this right?
First write the 4x4 matrix in the variables x, z, U,V. (Hint: dU dV = 1/2 dU dV + 1/2 dV dU).
After that only, make the change of variables and then write the matrix in the variables x,y,z,t.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top