spacefreak
- 2
- 0
Homework Statement
Evaluate the following limit or give a reason explaining why the limit does not exist.
\lim_{(x,y) \to (0,0)}\frac{x-y}{x+y}
Homework Equations
x = r*\cos\theta
y = r*\sin\theta
The Attempt at a Solution
\lim_{r \to 0}\frac{r*\cos\theta-r*\sin\theta}{r*\cos\theta+r*\sin\theta} =<br /> \lim_{r \to 0}\frac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta} =<br /> \lim_{r \to 0}\frac{1}{1+\tan\theta} - \lim_{r \to 0}\frac{1}{1+\cot\theta}
When I get to this point, I'm stuck. How do I either find the limit or show that it doesn't exist?
Last edited: