Solving ODE: How to Integrate Left Integral?

  • Thread starter Thread starter hanson
  • Start date Start date
  • Tags Tags
    Ode
hanson
Messages
312
Reaction score
0
Hi all!
How to solve this ODE?
\frac{a+b-c\sqrt{H}}{k}=\frac{dH}{dt} , where a,b, c and k are constants; H is the variable

I am up to this step:
\int \frac{dH}{a+b-c\sqrt{H}}=\int \frac{dt}{k}
and I don't know how to integrate the left integral, can anyone help please?
 
Last edited:
Physics news on Phys.org
Hi,


I = \int \frac { dH} { a + b- c \sqrt H }

Let u2= H >>> 2u du = dH

\therefore I = \int \frac {2u } { a + b- c u } du <br /> = \frac {-2} {c} \int \frac { -cu + a + b- (a + b) } { a + b- cu } du<br /> = = \frac {-2} {c} \left( 1 - \frac { a + b} { -c } \int \frac { -c } { a + b- cu } du \right)

= \frac { -2 } {c} u - \frac { 2(a + b) } {c^2} \ln | a + b- c u | + C <br /> = \frac { -2 } {c} \sqrt {H} - \frac { 2(a + b) } {c^2} \ln | a + b- c \sqrt {H} | + C
 
Last edited:
Ali 2 said:
Hi,


I = \int \frac { dH} { a + b- c \sqrt H }

Let u2= H >>> 2u du = dH

\therefore I = \int \frac {2u } { a + b- c u } du <br /> = \frac {-2} {c} \int \frac { -cu + a + b- (a + b) } { a + b- cu } du<br /> = = \frac {-2} {c} \left( 1 - \frac { a + b} { -c } \int \frac { -c } { a + b- cu } du \right)

= \frac { -2 } {c} u - \frac { 2(a + b) } {c^2} \ln | a + b- c u | + C <br /> = \frac { -2 } {c} \sqrt {H} - \frac { 2(a + b) } {c^2} \ln | a + b- c \sqrt {H} | + C


Many thanks.
But it is very hard to have a closed form of H in terms of t for the solution then?
 
It is not necessary to have an explicit relation, implicit relation is sufficuint
 
oops..sorry..
I have made a mistake in modelling...
The differential equation should be:
\frac{a+bsinwt-c\sqrt{H}}{k}=\frac{dH}{dt}
which again I don't know how to solve...
I simply can't separate it...
please help..
 
I don't know how to do this one but I know the answer using Mathematica

H[t]= a t w/k - c t w/k H^1/2 + k w/k (Constant of integration)- b Cos[wt]/k

blumfeld0
 
Hi blumfeld0,
is your answer for the amended ODE I just posted?
 
to confirm, is the solution:
H(t)=\frac{atw}{k}-ct\frac{w}{k}\sqrt{H}+\frac{kw}{k}(constant of integration)-bcos\frac{wt}{k}

but the "k" can be cancelled?
 
can anyone help confirm the answer?
 
  • #10
Mathematica 5.2 cannot solve this:

Code:
[tex]
\text{DSolve[}h^{'}[t]==\frac{a+b Sin[\omega t]-c\sqrt{h[t]}}{k},h,t]
[/tex]

So Blumfeld, how did you arrive at that expression?

Also, when I back-substitute yours into the ODE, Mathematica does not indicate it satisfies the ODE.
 
Last edited:

Similar threads

Back
Top