roughwinds
- 11
- 0
Homework Statement
Solve for
xy'' + y' +αy + βxy = 0
α and β are constants
The Attempt at a Solution
What I initially had in mind was:
xy'' + y' +αy + βxy = x²y'' + xy' +αxy + βx²y = 0
y = \sum_{n=0}^\infty a_n x^{n}
xy = \sum_{n=0}^\infty a_n x^{n+1} = \sum_{n=1}^\infty a_{n-1} x^{n} = a_0x + \sum_{n=2}^\infty a_{n-1} x^{n}
x²y = \sum_{n=0}^\infty a_n x^{n+2} = \sum_{n=2}^\infty a_{n-2} x^{n}
y' = \sum_{n=1}^\infty na_n x^{n-1}
xy' = \sum_{n=1}^\infty na_n x^{n} = a_1x + \sum_{n=2}^\infty na_n x^{n}
y'' = \sum_{n=2}^\infty n(n-1)a_n x^{n-2}
xy'' = \sum_{n=2}^\infty n(n-1)a_n x^{n}
a_0x + a_1x +\sum_{n=2}^\infty[n(n-1)a_n + na_n + αa_{n-1} + βa_{n-2}]x^{n} = 0
a_1 = - a_0
Recurrence relation for n ≥ 2:
a_n = \frac {-(αa_{n-1}+βa_{n-2})}{n(n-1)+n}
a_n = \frac {-(αa_{n-1}+βa_{n-2})}{n²}
a_2 = \frac {-(αa_{1}+βa_{0})}{4} = \frac {αa_{0}-βa_{0}}{4} = \frac {(α-β)a_{0}}{4}
a_3 = \frac {-(αa_{2}+βa_{1})}{9} = \frac {-α\frac {(α-β)a_{0}}{4}+βa_{0}}{9} = \frac {(4β + αβ - α^{2})a_0}{36}
a_4 = \frac {-(αa_{3}+βa_{2})}{16} =\frac {(9αβ - 9β^{2} + 4αβ - α^{3} + α^{2}β)a_0}{576}
Sadly I can't see how to proceed from here. Did I mess anything up?
Apparently this has to be solved with Frobenius, I'll edit this thread later with another attempt at this.
Last edited: