Solving Queueing Theory Problem with Matrix Exponential & Matrix Toeplitz Form

  • Thread starter Thread starter Päällikkö
  • Start date Start date
  • Tags Tags
    Theory
AI Thread Summary
The discussion revolves around solving a queueing theory problem using matrix exponential and block Toeplitz matrices. The author formulated their issue in terms of the matrix exponential of an infinite matrix but struggled with the exponentiation and accessing asymptotic behavior. They identified their problem as related to calculating phase-type distributions and sought a simpler calculation method due to the complexity of existing literature. Suggestions included calculating eigenvalues and deriving the Jordan Chevalley normal form to facilitate exponentiation. The conversation highlights the challenges of navigating advanced mathematical concepts in queueing theory.
Päällikkö
Homework Helper
Messages
516
Reaction score
11
I recently encountered a problem, which I, after several other dead ends, managed to formulate in terms of the matrix exponential of an infinite matrix. As I'm not terribly familiar with the mathematics involved, I wasn't quite able to do the exponentiation. Numerically, however, I did find some interesting recurrences, but couldn't get the general case written out with pen and paper, and thus couldn't quite access the asymptotic behaviour as the size of the matrix goes to infinity.

Researching online, I encountered queueing theory, and lo and behold, I found that my problem is exactly that of calculating the phase-type distribution: http://en.wikipedia.org/wiki/Phase-type_distribution.

So, my matrix has a block Toeplitz form, to be more specific, the diagonal is filled by a repeating 2x2 block and off to the right, I've got a 2x1 matrix. The rest of the elements of the transition rate matrix, as it is apparently called, are zero.

So basically I'm looking for an easy way do the calculation, as it turned out to be rather time-consuming trying to understand the established lingo in the literature. I couldn't even figure out if a general formula actually exists or not, although given my numerical trials, I'd suspect one does. I'd content if somebody told me that it doesn't, though.
 
Mathematics news on Phys.org
There is no easy way without additional information of the matrix. One way which comes to mind is to calculate the eigenvalues:
$$
T = \begin{bmatrix}a&c&&0\\b&\ddots&\ddots& \\&\ddots&\ddots&c\\0&&b&a \end{bmatrix} \Longrightarrow \lambda_k = a-2\sqrt{bc} \cos\left( \dfrac{\pi k}{n+1}\right)
$$
derive the Jordan Chevalley normal form and try to exponentiate this. At least this should be a bit easier.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top