physicus
- 52
- 3
Homework Statement
We consider global AdS given by the coordinates (\rho,\tau, \Omega_i), i=1,\ldots,d and the metric
ds^2=L^2(-cosh^2\,\rho\,d\tau^2+d\rho^2+sinh^2\,\rho\,d \Omega_i{}^2)
Find the trajectory \tau(\rho), radially-directed geodesics, strating from \rho=\rho_0 with proper time \tau(\rho_0).
Homework Equations
Geodesic equation: \frac{d^2x^{\mu}}{d \lambda^2}+\Gamma^\mu_{\nu \alpha}\frac{dx^\nu}{d \lambda}\frac{dx^\alpha}{d \lambda}=0
The Attempt at a Solution
I calculated the Christoffel symbols to obtain the following non-zero components:
\Gamma^\rho_{\tau\tau}=sinh\,\rho
\Gamma^\phi_{ii}=-cosh\,\rho
\Gamma^\tau_{\rho\tau}=\Gamma^\tau_{\tau\rho}=tanh\,\rho
\Gamma^i_{\rho i}= \Gamma^i_{i\rho}=coth\,\rho
Using the geodesic equation this yields:
\frac{d^2\rho}{d\lambda^2}+sinh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2-\sum_i cosh\,\rho\,\left(\frac{d\Omega_i}{d\lambda}\right)^2=0
\frac{d^2\tau}{d\lambda^2}+2tanh\,\rho\,\frac{d \rho}{d\lambda}\frac{d\tau}{d\lambda}=0
\frac{d^2\Omega_i}{d\lambda^2}+2coth\,\rho\,\sum_j \frac{d \rho}{d\lambda}\frac{d\Omega_j}{d\lambda}=0
We are looking for radially directed geodesics, i.e. try if there are solutions with \frac{d \Omega_i}{d\lambda}=0. Since this ansatz leads to \frac{d^2 \Omega_i}{d\lambda^2}=0 it is consistent with the above equations. Therefore, we can simplify:
\frac{d^2 \rho}{d\lambda^2}+sinh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2=0 (*)
\frac{d^2\tau}{d\lambda^2}+2tanh\,\rho\,\frac{d \rho}{d\lambda}\frac{d\tau}{d\lambda}=0
Since we look for massless geodesics we require
g_{\mu\nu}\frac{dx^\mu}{ \lambda}\frac{dx^\nu}{d \lambda}=0
\Rightarrow -cosh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2+\left(\frac{d\rho}{d\lambda}\right)^2+\sum_i sinh\,\rho\,\left(\frac{d\Omega_i}{d\lambda}\right)^2=0
\Rightarrow -cosh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2+\left(\frac{d\rho}{d\lambda}\right)^2 = 0
We can use this to simplify (*) to get
\frac{d^2\rho}{d\lambda^2}+tanh\,\rho\,\left(\frac{d\rho}{d\lambda}\right)^2=0
However, I still don't see a solution. Does anyone have an idea?
Cheers, physicus