Dannbr
- 9
- 0
\begin{array}{l}<br />
\\<br />
\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{x^{n + 1}}\left( {\frac{1}{{{{\left( { - 3} \right)}^{n + 1}}}} - 1} \right)}}{{{x^n}\left( {\frac{1}{{{{\left( { - 3} \right)}^n}}} - 1} \right)}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\left( {\frac{{{{\left( x \right)}^n}\left( x \right)}}{{{{\left( { - 3} \right)}^n}\left( { - 3} \right)}} - \frac{{{{\left( x \right)}^n}\left( x \right)}}{1}} \right) \bullet \left( {\frac{{{{\left( { - 3} \right)}^n}}}{{{x^n}}} - \frac{1}{{{x^n}}}} \right)} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{x}{{\left( { - 3} \right)}} - x} \right|<br />
\end{array}
\begin{array}{l}<br /> \\<br /> <br /> \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{x^{n + 1}}\left( {\frac{1}{{{{\left( { - 3} \right)}^{n + 1}}}} - 1} \right)}}{{{x^n}\left( {\frac{1}{{{{\left( { - 3} \right)}^n}}} - 1} \right)}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\left( {\frac{{{{\left( x \right)}^n}\left( x \right)}}{{{{\left( { - 3} \right)}^n}\left( { - 3} \right)}} - \frac{{{{\left( x \right)}^n}\left( x \right)}}{1}} \right) \bullet \left( {\frac{{{{\left( { - 3} \right)}^n}}}{{{x^n}}} - \frac{1}{{{x^n}}}} \right)} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{x}{{\left( { - 3} \right)}} - x} \right|<br /> \end{array}
This is as far as i can get I have an answer key which says it simplifies down to..
= \left| {\frac{x}{3}} \right|
could someone help me out with what I am not seeing
Thanks
\begin{array}{l}<br /> \\<br /> <br /> \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{x^{n + 1}}\left( {\frac{1}{{{{\left( { - 3} \right)}^{n + 1}}}} - 1} \right)}}{{{x^n}\left( {\frac{1}{{{{\left( { - 3} \right)}^n}}} - 1} \right)}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\left( {\frac{{{{\left( x \right)}^n}\left( x \right)}}{{{{\left( { - 3} \right)}^n}\left( { - 3} \right)}} - \frac{{{{\left( x \right)}^n}\left( x \right)}}{1}} \right) \bullet \left( {\frac{{{{\left( { - 3} \right)}^n}}}{{{x^n}}} - \frac{1}{{{x^n}}}} \right)} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{x}{{\left( { - 3} \right)}} - x} \right|<br /> \end{array}
This is as far as i can get I have an answer key which says it simplifies down to..
= \left| {\frac{x}{3}} \right|
could someone help me out with what I am not seeing
Thanks