Solving Rational Functions: Rewriting Equation to Get R(z)=...

AI Thread Summary
The discussion focuses on rewriting a rational function equation to express it in the form R(z) = quotient x divisor. It emphasizes that R(z) is a product of the roots (z - a_j) and the quotient S_j(z), which represents the rational function. Clarification is provided that the rational function is indeed a quotient of two polynomials, specifically P(z) and Q(z). The transformation from one equation to another involves manipulating the terms to achieve a common denominator. Understanding these relationships is crucial for accurately rewriting the rational function.
Ratzinger
Messages
291
Reaction score
0
http://planetmath.org/encyclopedia/CPlace.html, how do I rewrite (2) to get the third equation R(z)=... ?

thank you
 
Mathematics news on Phys.org
remember the rational function will produce a quotient, which when multiplied by the divisor will yeild the original R(z). So the second expression is in the form R(z) = quotient x divisor.

More specifically (z-a_j)^uj X S_j(z) .. Where as they said S_j(z) is the rational fuction ( which was the quotient ). It is not that much about "deriving" the third form but more showing that the complex function R(z) is a product of the number of roots ( z-a_j) and the quotient S_j(z).

My 2 cents - correct if neccesary.
 
Last edited:
thanks for answering!

But what do you mean by qoutient produced by a rational function? The rational is a quotient of two polynomials, so what quotient is it producing?
 
Take
<br /> S_j(z) = \frac{a_0(z-\alpha_1)^{\mu_1}(z-\alpha_2)^{\mu_2}\cdots(z-\alpha_{j - 1})^{\mu_{j - 1}}(z-\alpha_{j + 1})^{\mu_{j + 1}}\cdots(z-\alpha_r)^{\mu_r}} {b_0(z-\beta_1)^{\nu_1}(z-\beta_2)^{\nu_2}\ldots(z-\beta_s)^{\nu_s}},<br />
:smile:
 
The equation labled (3) is not derived directly from equation (2). What they have done is write the product of all terms in the numerator of (2) as P(z) and the product of all terms in the denominator as Q(z):
R(z)= P(z)/Q(z).

Then they look at R(z)- c= P(z)/Q(z)- c. Getting the common denominator (Q(z)) you have P(z)/Q(z)- cQ(z)/Q(z)= (P(z)- cQ(z))/Q(z)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top