Solving Rocket Launch Differential Equations

  • Thread starter mysticboon
  • Start date
Hi I'm currently working on a project which involves solving the rocket launch differential equations to find the apogee of an orbit. I know the analytical model for the equations as:
Δu = Isp*g0*ln(mf/me), where Isp is fuel impusle, mf is mass of full tank and me is mass of empty tank, but for this project I need to solve the differential equations in matlab numerically.

I know the general equation as d(M*u)/dt = Fnet = Isp*g0*dmp/dt where dmp is the change in mass of the propellant. I'm just kind of stuck in working around the differential equations to get something I can solve for in matlab. I've tried substituting some differentials for each other in order to get one equation, but I ended up cancelling terms to get something that doesn't make sense to me. I've been using this site to work with the equations:
% Veq = Isp*g0
% mdot = F/(Isp*g0)
% mdot = dmp/dt
% Mdu = Veq*mdot
% dm = -dmp = -mdot = -F/(Isp*g0)
% dmp = fnet/veq = fnet/(Isp*go)
% du = -(Isp(g0)*fnet/(Isp*g0)/M
Can anyone please give me some help in how to get one or two differential equations to use in matlab? Thank you

Want to reply to this thread?

"Solving Rocket Launch Differential Equations" You must log in or register to reply here.

Related Threads for: Solving Rocket Launch Differential Equations

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving