Solving Surface Equation Homework

  • Thread starter Thread starter athrun200
  • Start date Start date
  • Tags Tags
    Surface
athrun200
Messages
275
Reaction score
0

Homework Statement



attachment.php?attachmentid=37177&stc=1&d=1310620954.jpg


Homework Equations





The Attempt at a Solution



It seems very obvious that after rotation, it becomes a circle, so how to write it out mathematically?

That I don't know the general equation of a surface.
Is y^2+x^2=f^2(x) the answer?


attachment.php?attachmentid=37178&stc=1&d=1310620954.jpg
 

Attachments

  • 1.jpg
    1.jpg
    14.3 KB · Views: 444
  • 2.jpg
    2.jpg
    21.8 KB · Views: 377
Physics news on Phys.org
Yes, this is the general equation for a circle

f(x)²=x²+y²=r²

As seen in the figure, f(x)=radius

And from polar coordinates you can get the equation:

x=r*cos(\Theta)
y=r*sin(\Theta)
x²+y²=r²(cos²(\Theta)+sin²(\Theta))=r²
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top