Solving the Differential Equation: $\frac{d}{dt} \frac{t}{(t-1)^2}$

QuarkCharmer
Messages
1,049
Reaction score
3

Homework Statement


d/dt t/(t-1)^2

Homework Equations


No Chain Rule.

The Attempt at a Solution



\frac{d}{dt} \frac{t}{(t-1)^2}
\frac{t\frac{d}{dt}(t-1)^2 - (t-1)^2 \frac{d}{dt}t}{(t-1)^4}
\frac{t\frac{d}{dt}(t^2-2t+1) - 1(t-1)^2}{(t-1)^4}
\frac{t(2t-2)-(t-1)^2}{(t-1)^4}
\frac{2t^2-2t-t^2+2t-1}{(t-1)^4}
\frac{(t+1)(t-1)}{(t-1)(t-1)^3}
\frac{(t+1)}{(t-1)^3}

The book shows the solution being negative. I can't figure out where I am going wrong here.
 
Physics news on Phys.org
I think you have a problem at the 2nd line of your attempt. You should first take the derivative of the above term when taking the derivatives of fractions.

Should be like this:
\frac{(t-1)^2 \frac{d}{dt}t- t\frac{d}{dt}(t-1)^2}{(t-1)^4}
 
Ahh, I see. I'm doing the quotient rule wrong then.

Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top