Solving the Horizontal Light Clock Puzzle: Length Contraction & Frame Shifting

center o bass
Messages
545
Reaction score
2
Consider a Horizontal light clock of length ##L_0## lying at rest in a frame K. There are two important events: (A) a photon gets emitted from the left mirror and (B) it gets reflected at the right mirror.
Another frame K' is moving by at velocity v and the frames are in standard configuration such that event (A) is assigned coordinates ##(t_A,x_A) = (t'_A,x'_A) = (0,0)##. Clearly, ##t_B = L_0## (c=1), but now the question is, what is ##t_B'##?

My intuitive reasoning would be as follows: in K' the length of the light clock is contracted to a length of ##L_0/\gamma## and photon has the same velocity c=1. But now the right mirror is moving towards the photon at velocity v, and hence it takes a time
$$t_B' = \frac{L_0}{\gamma (1-v)}$$
for the photon to reach the right mirror.

However, according to
exercise 4 at p. 24 in http://www.uio.no/studier/emner/matnat/astro/AST1100/h14/undervisningsmateriale/lecture7.pdf
the answer should be
$$t_B' = L_0 \gamma(1-v).$$
So, where am I going wrong in my argument?
 
Physics news on Phys.org
The text says the light clock is moving at v but you said frame K' is moving at v which makes the light clock move at -v. If you change the sign of v in your equation, you will get the same answer.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top