Solving the Inequality: How to Find the Solution for (a-x+1)(a-x+2) ≤ a?

  • Thread starter Thread starter nightking
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
To solve the inequality (a-x+1)(a-x+2) ≤ a, first expand the left side and rearrange it to isolate terms involving x. It’s crucial to remember that dividing by zero is not allowed, and dividing by a negative number requires flipping the inequality sign. A suggested approach is to express the left side as a difference of squares, specifically using the form ((a - x + 3/2) - 1/2)((a - x + 3/2) + 1/2) ≤ a. This method will help in finding x in terms of the constant a. Following these steps will lead to a clearer solution for the inequality.
nightking
Messages
2
Reaction score
0
How can I solve this inequality?

(a-x+1)(a-x+2) ≤ a

where a is a constant with unknown value.

Thanks in advance.
 
Mathematics news on Phys.org
Hey nightking and welcome to the forums.

You need to expand out the left hand side and then put on side completely in terms of x.

The rules for inequalities are that you can't divide any side by zero (you also have to make sure any variables you have are not zero either if you want to divide), if you divide by a negative number you flip the inequality sign, if you subtract or add a term the sign doesn't change.
 
If you want to find x in terms of a, I would start with
((a - x + 3/2) - 1/2)((a - x + 3/2) + 1/2) ≤ a

The left hand side is then the difference of two squares...
 
AlephZero said:
If you want to find x in terms of a, I would start with
((a - x + 3/2) - 1/2)((a - x + 3/2) + 1/2) ≤ a

The left hand side is then the difference of two squares...

Brilliant. Thanks!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top