Solving the Puzzle: Train and Car Speeds

  • Thread starter Thread starter yankee
  • Start date Start date
  • Tags Tags
    Car Puzzle Train
AI Thread Summary
A train moves at a constant speed of 33 m/s, while a car, initially 37 m behind, travels at 47 m/s and accelerates at 5 m/s². To find the car's speed when it passes the train, one must set the equations of motion for both vehicles equal to each other. The car's initial speed can be adjusted by subtracting the train's speed, leading to a new equation for the car's motion. Using the correct equations and solving for time will yield the car's speed at the moment it overtakes the train. Proper application of these principles is essential for arriving at the correct answer.
yankee
Messages
8
Reaction score
0
A train is moving parallel and adjaceent to a highway with a constant speed of 33 m/s, initially a car is 37 m behind the train, traveling in the same direction as the train at 47 m/s and accelerating at 5 m/s^2.
What is the speed of the car just as it passes the train? Answer in units of m/s
----
Basically I found that:
Vo= 47 m/s
a= 5 m/s^2
x= 37 m
----
Somehow i found out that
t= .869919 s
Vf= 50.7838
---
However my answer is incorrect. I know the train is still moving but I can't seem to figure out how to connect the train factor and the car factor. How would I go about to solving this question?
thanks
 
Physics news on Phys.org
How about assuming the train is stationary and taking the initial speed of the car to be 47 - 33 = 14 m.s-1? :wink:
 
Somehow you found out that...?

Write the two equations of motion for the car and train, and apply the initial conditions that you are given. Then set the position of the car and train equal to each other, and solve for t. Then use the t to tell you the speed of the car at that moment.
 
I tried the problem again, this is what I did

Car:
Vo=14m/s
a= 5 mi/s^2
x=37m

Train:
Vo=33 m/s
a= 0 m/s
x=37m

Vf^2=Vo^2 +2ax
Vf^2= (14 m/s)^2 + 2((5m/s^2)(37))
Vf^2= 196m^2/s^2 +740 m^2/s^2
square root of Vf^2= square root (936 m^2/s^2)
Vf= 30.5941 m/s
Then I took this number added it to 47 the initial cars velocity and i got 77.5941.
I entered the answer and I was still incorret.
Please help. Any suggestions? Thnaks
 
The general equations of motion to use are:

x = x_0 + v_0 t + \frac{a t^2}{2}

v = v_0 + a t

I'm not familiar with the v^2 = {v_0}^2 + 2 a x equation, although that may be a valid shortcut. I would start by writing the above 2 equations for each vehicle, applying the initial conditions, and then solving the equations for equal displacements x at some time in the future. I'm pretty sure that approach will get you to the answer.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top