calculus_jy
- 56
- 0
recenty i read the rocket equation, derivation of, however i think i have a slight confusion with signs
suppost initially a rocket has
mass= M
velocity= \overrightarrow{v}
then at a time dt later,
mass of rocket= M-dM
velocity of rocket= \overrightarrow {v} +d\overrightarrow {v}
mass of ejacted gas= dM
velocity of gas= \overrightarrow{u}
using conservation of momentum
\overrightarrow{v}M=(M-dM)(\overrightarrow{v}+d\overrightarrow{v})+\overrightarrow{u}dM
(\overrightarrow{u}-\overrightarrow{v})dM+Md\overrightarrow{v}=0
but (\overrightarrow{u}-\overrightarrow{v})=velocity of gas relative to rocket
let (\overrightarrow{u}-\overrightarrow{v})=\overrightarrow{U}which is a constant
\overrightarrow{U}dM+Md\overrightarrow{v}=0
-\int_{M_0}^{M}\frac{dM}{M}=\frac{1}{\overrightarrow{U}}\int_{\overrightarrow{v}_0}^{\overrightarrow{v}}d\overrightarrow{v}
now -ln\frac{M}{M_0}=\frac{\overrightarrow{v}-\overrightarrow{v_0}}{\overrightarrow{U}}
the problem is , when taking the velocity in the direciton rocket is travelling
\overrightarrow{U}<0
-ln\frac{M}{M_0}>0since \frac{M}{M_0}<1
then
\overrightarrow{v}-\overrightarrow{v_0}<0 which is impossibe as the rocket is accelerating?
suppost initially a rocket has
mass= M
velocity= \overrightarrow{v}
then at a time dt later,
mass of rocket= M-dM
velocity of rocket= \overrightarrow {v} +d\overrightarrow {v}
mass of ejacted gas= dM
velocity of gas= \overrightarrow{u}
using conservation of momentum
\overrightarrow{v}M=(M-dM)(\overrightarrow{v}+d\overrightarrow{v})+\overrightarrow{u}dM
(\overrightarrow{u}-\overrightarrow{v})dM+Md\overrightarrow{v}=0
but (\overrightarrow{u}-\overrightarrow{v})=velocity of gas relative to rocket
let (\overrightarrow{u}-\overrightarrow{v})=\overrightarrow{U}which is a constant
\overrightarrow{U}dM+Md\overrightarrow{v}=0
-\int_{M_0}^{M}\frac{dM}{M}=\frac{1}{\overrightarrow{U}}\int_{\overrightarrow{v}_0}^{\overrightarrow{v}}d\overrightarrow{v}
now -ln\frac{M}{M_0}=\frac{\overrightarrow{v}-\overrightarrow{v_0}}{\overrightarrow{U}}
the problem is , when taking the velocity in the direciton rocket is travelling
\overrightarrow{U}<0
-ln\frac{M}{M_0}>0since \frac{M}{M_0}<1
then
\overrightarrow{v}-\overrightarrow{v_0}<0 which is impossibe as the rocket is accelerating?
Last edited: