Solving the Verhulst Equation: Where Did My Calculation Go Wrong?

  • Thread starter Thread starter asdf1
  • Start date Start date
asdf1
Messages
734
Reaction score
0
for the following question:
y`-Ay=-By^2

my problem:
Suppose u=y^(-1)
so u`=-y^(-2)y`=B-Au
so du/(B-Au)= dx
=> B-Au=ce^x
=> u=(B-ce^x)/A
so y=1/u=a/(B-ce^x)

however, the correct answer should be y=1/[(B/A)+ce^(-ax)]
does anybody know where my calculations went wrong?
 
Physics news on Phys.org
asdf1 said:
so u`=-y^(-2)y`=B-Au

Take a look at this step again. I think one of the terms has the wrong sign.
 
i see~
thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top