Solving this partial differential equation

schniefen
Messages
177
Reaction score
4
Homework Statement
Solve the differential equation ##\frac{{\partial{f}}}{{\partial{x}}}-3\frac{{\partial{f}}}{{\partial{y}}}=0## by introducing the variables ##u=ax+y, v=x## and choosing the constant ##a## appropriately.
Relevant Equations
The chain rule for multivariable functions.
Introducing the new variables ##u## and ##v##, the chain rule gives

##\dfrac{{\partial{f}}}{{\partial{x}}}=\dfrac{{\partial{f}}}{{\partial{u}}} \dfrac{{\partial{u}}}{{\partial{x}}}+\dfrac{{\partial{f}}}{{\partial{v}}} \dfrac{{\partial{v}}}{{\partial{x}}}##

##-3\dfrac{{\partial{f}}}{{\partial{y}}}=-3(\dfrac{{\partial{f}}}{{\partial{u}}} \dfrac{{\partial{u}}}{{\partial{y}}}+\dfrac{{\partial{f}}}{{\partial{v}}} \dfrac{{\partial{v}}}{{\partial{y}}})##
##\dfrac{{\partial{u}}}{{\partial{x}}}## equals ##a## and ##\dfrac{{\partial{v}}}{{\partial{x}}}=1##. Also ##\dfrac{{\partial{u}}}{{\partial{y}}}=1## and ##\dfrac{{\partial{v}}}{{\partial{y}}}=0##. So

##\dfrac{{\partial{f}}}{{\partial{x}}}=a\dfrac{{\partial{f}}}{{\partial{u}}}+\dfrac{{\partial{f}}}{{\partial{v}}}##

##-3\dfrac{{\partial{f}}}{{\partial{y}}}=-3\dfrac{{\partial{f}}}{{\partial{u}}}##

##\implies \dfrac{{\partial{f}}}{{\partial{x}}}-3\dfrac{{\partial{f}}}{{\partial{y}}}=\dfrac{{\partial{f}}}{{\partial{u}}}(a-3)+\dfrac{{\partial{f}}}{{\partial{v}}}##
The last equality should also equal ##0##. How does one go from here to find the solution ##f##?
 
Physics news on Phys.org
Note the phrase that says, "choosing the constant a appropriately" Is there any choice of a that makes the problem easy?
 
  • Like
Likes schniefen
Bonus question. Solve for ##x>0## and ##y>0## the differential equation

##x\dfrac{{\partial{f}}}{{\partial{x}}}+y\dfrac{{\partial{f}}}{{\partial{y}}}=y \quad (1)##​

by introducing the new variables ##x=u## and ##y=\frac{u}{v}##. The chain rule gives

##\dfrac{{\partial{f}}}{{\partial{x}}}=\dfrac{{\partial{f}}}{{\partial{u}}} \dfrac{{\partial{u}}}{{\partial{x}}}+\dfrac{{\partial{f}}}{{\partial{\frac{u}{v}}}} \dfrac{{\partial{\frac{u}{v}}}}{{\partial{x}}}##

##\dfrac{{\partial{f}}}{{\partial{y}}}=\dfrac{{\partial{f}}}{{\partial{u}}} \dfrac{{\partial{u}}}{{\partial{y}}}+\dfrac{{\partial{f}}}{{\partial{\frac{u}{v}}}} \dfrac{{\partial{\frac{u}{v}}}}{{\partial{y}}}##
From the change of variables it follows that ##u(x)=x, v(x)=\frac{x}{y}, u(y)=vy## and ##v(y)=\frac{u}{y}##. Then

##\dfrac{{\partial{u}}}{{\partial{x}}}=1##,
##\dfrac{{\partial{\frac{u}{v}}}}{{\partial{x}}}=\dfrac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}=\dfrac{\frac{x}{y}-\frac{x}{y}}{\frac{x^2}{y^2}}=0##,
##\dfrac{{\partial{u}}}{{\partial{y}}}=v##,
##\dfrac{{\partial{\frac{u}{v}}}}{{\partial{y}}}=\dfrac{u'(y)v(y)-u(y)v'(y)}{v(y)^2}=\dfrac{\frac{uv}{y}+\frac{vyu}{y^2}}{\frac{u^2}{y^2}}=\dfrac{2vy}{u}=2##,
So ##(1)## is equivalent to

##u\dfrac{{\partial{f}}}{{\partial{u}}}+\dfrac{u}{v}(\dfrac{{\partial{f}}}{{\partial{u}}}v+\dfrac{{\partial{f}}}{{\partial{\frac{u}{v}}}}2)=\frac{u}{v}##

##\iff \quad 2(\dfrac{{\partial{f}}}{{\partial{u}}}+\dfrac{1}{v}\dfrac{{\partial{f}}}{{\partial{\frac{u}{v}}}})=\frac{1}{v}##​
How can one evaluate this expression further?
 
Before we move on, what was your solution to the first question?
 
phyzguy said:
Before we move on, what was your solution to the first question?
Choosing ##a=3## yields ##f(u,v)=C_2u^k+C_1##, where ##C_2,C_1,k\in\mathbf{R}##, which can be reformulated as a function depending only on ##u=3x+y##.
 
schniefen said:
Choosing ##a=3## yields ##f(u,v)=C_2u^k+C_1##, where ##C_2,C_1,k\in\mathbf{R}##, which can be reformulated as a function depending only on ##u=3x+y##.
Ignoring the constants, does the function f(u) have to be of the form f(u) = u^k?
 
No, any function ##f(3x+y)## that is differentiable will do.
 
  • Like
Likes phyzguy
I personally have problem understanding your work and how you apply the chain rule in #3 (at some point you calculate ##\frac{\partial\frac{u}{v}}{\partial y}=2## when it is obviously that ##y=\frac{u}{v}## hence that partial derivative is equal to 1).

I suggest you write down ##u(x,y)## and ##v(x,y)## as functions of x,y and then apply (in a standard way) the chain rule for partial derivatives as
$$\frac{\partial f}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}$$ and
$$\frac{\partial f}{\partial y}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}$$
 
  • Like
Likes schniefen
Back
Top