Solving Tough Differential Equations with Parameters: A Step-by-Step Approach

  • Thread starter Thread starter juice34
  • Start date Start date
juice34
eq#1) -1/r(d/dr)(r*tao)=0
eq#2)tao=m(-dv/dr)^n (n is a parameter)

for v=0 at r=R and v=V and r=kR (k and V are parameters)

I have no idea how to start this or what is the correct way to start.

I initially integrated tao to get dtao/dr=m(-dv/dr)^n-1, but this just complicates things further with the n-1. Next i plugged in tao into the first equation and then used the product rule so -1/r(d/dr)(r*m(-dv/dr)^n)=0 once again i get the n-1 factor. Then i tried taking the derivative of #1 with respect to r to yield -(1*tao)/r=0. Please could someone please guide me in the right steps!
 
Physics news on Phys.org
So your equations are:
-\frac{1}{r}\frac{dr\tau}{dr}= 0
and
\tau= m\left(\frac{dv}{dr}\right)^n ?

Well, multiplying by -r, the first equation is just \frac{d r\tau}{dr}= 0 so that r\tau= constant and
\tau= \frac{C}{r}
Then the second equation becomes
\frac{C}{r}= m\left(\frac{dv}{dr}\right)^n
so
\left(\frac{dv}{dr}\right)^n= \frac{C}{mr}
\frac{dv}{dr}= \frac{C^{1/n}}{m^{1/n}r^{1/n}}
dv= \left(\frac{C}{m}\right)^{1/n} r^{-1/n}dr
and integrate.
 
Thank you Hallsofivey!:cool:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top