Vanadium 50 said:
Please use Latex and not a PDF of scribbles.
Please refer to the below,
$$\Omega_x = \sqrt[]{\frac{4\pi^3G}{45}*g_*(m)}\frac{1}{\langle \sigma\nu\rangle}\frac{x_fT_0^3}{30\rho_cr}$$\\
Considering the facts at WIMP dark matter ,
$$\Omega_X \approx\Omega_dm\approx0.3$$
considering
$$\rho_cr = 1.054h^2 10^{-5} \frac{GeV}{cm^3}$$
$$G^\frac{1}{2} = 10^{19} GeV$$
$$ x = \frac{m}{T}$$
$$ x_f \approx 10$$
$$ g_m \approx 100 $$
$$ T_0 = 10^{-13} GeV$$
Hence the equation for $$\Omega_dm =\sqrt[]{\frac{4\pi^3G}{45}*g_*(m)}\frac{1}{\langle \sigma\nu\rangle}\frac{x_fT_0^3}{30\rho_cr}$$
\clearpage
Need to show that the
$$\Omega_dm =0.3 h^{-2} (\frac{x_f}{10})(\frac{g_*(m)}{100})^\frac{1}{2} \frac{10^{-37}cm^2}{\langle\sigma\nu\rangle}$$
follows from the first equation when baryons are neglected.
considering the normalizing factors, the equation can be rewritten as, taken 0.3 as the magnitude.
$$\Omega_dm =0.3\sqrt[]{\frac{4\pi^3G}{45}}*\sqrt[]{\frac{g_*(m)}{100}}\frac{1}{\langle \sigma\nu\rangle}\frac{x_f}{10}[\frac{T_0^3}{30*1.054h^2*10^{-5}\frac{GeV}{cm^3}}]$$
$$\Omega_dm =0.3 \sqrt[]{\frac{4\pi^3G}{45}} (\frac{g_*(m)}{100})^\frac{1}{2}\frac{1}{\langle \sigma\nu\rangle}\frac{x_f}{10}[\frac{(10^{-13} GeV)^3}{30*1.054h^2*10^{-5}\frac{GeV}{cm^3}}]$$
Organizing the above equation to tally with the formula needs to be proven,
$$\Omega_dm = 0.3 h^{-2} (\frac{g_*(m)}{100})^\frac{1}{2}\frac{1}{\langle \sigma\nu\rangle}(\frac{x_f}{10}) \sqrt[]{\frac{4\pi^3G}{45}}[\frac{(10^{-13} GeV)^3}{30*1.054*10^{-5}\frac{GeV}{cm^3}}] $$
applying the value of the $$(G^\frac{1}{2})= 10^{19} GeV$$
$$\Omega_dm = 0.3 h^{-2 }(\frac{g_*(m)}{100})^\frac{1}{2}\frac{1}{\langle \sigma\nu\rangle}(\frac{x_f}{10}) \sqrt[]{\frac{4\pi^3}{45}}(G)^\frac{1}{2}\frac{(10^{-13} GeV)^3}{30*1.054*10^{-5}\frac{GeV}{cm^3}}] $$
\small $$\Omega_dm = 0.3 h^{-2} (\frac{g_*(m)}{100})^\frac{1}{2}\frac{1}{\langle \sigma\nu\rangle}(\frac{x_f}{10}) \sqrt[]{\frac{4\pi^3}{45}}(10^{19})Gev\frac{(10^{-13} GeV)^3}{30*1.054*10^{-5}\frac{GeV}{cm^3}}] $$