Solving xy' + 2y = sqrt(1 + x^2)

  • Thread starter Thread starter cscott
  • Start date Start date
Click For Summary

Homework Help Overview

The problem involves solving the differential equation xy' + 2y = sqrt(1 + x^2), which falls under the subject area of differential equations. Participants are exploring the correctness of their solutions and the use of computational tools for verification.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to solve the equation using an integrating factor and presents a solution that they believe is incorrect upon substitution. Other participants question the manipulation of terms and suggest clarifications regarding the integration process. There is also discussion about using Maple for solving the equation and the challenges of simplification in computational tools.

Discussion Status

The discussion is ongoing, with participants sharing their attempts and experiences using Maple. Some guidance on using Maple effectively has been offered, but there is no explicit consensus on the correctness of the original solution. Different interpretations of the problem and the computational results are being explored.

Contextual Notes

Participants are navigating potential typos and the complexities of simplification in both manual and computational methods. There is an acknowledgment of the limitations of software tools in providing simplified answers.

cscott
Messages
778
Reaction score
1

Homework Statement



Solve xy' + 2y = sqrt(1 + x^2)

Homework Equations



I got an integrating factor of x^2

So y = 1/x^2 \int{x\sqrt{1 + x^2}}

The Attempt at a Solution



and I get y =\frac{(1 + x^2)^{3/2}}{3x^2} for C = 0

But this wrong when I substitute it in ... what'd I do wrong?
 
Last edited:
Physics news on Phys.org
How would I solve this in Maple? When I do and try it's answer it seems wrong as well... it tells me 2y = \sqrt(1+x^2)[/tex]
 
It is wrong because you have multiplied the sqruare root expression with x^2, rather than with just x:

xy'+2y=\sqrt{1+x^{2}}\to{x}^{2}y'+2xy=x\sqrt{1+x^{2}}\to(x^{2}y)'=x\sqrt{1+x^{2}}
And so on..
 
sorry, I that was a typo... with x\sqrt{1 + x^2} you get the y as above. (at least I do... on my calculator too) but when I substitute for y into the LHS it doesn't equal \sqrt{1+x^2}
 
I just used the Maple packaged with Matlab.

>> syms x y C1

>> ysoln = dsolve('x*Dy+2*y=sqrt(1+x^2)','x')
ysoln = (1/3*(1+x^2)^(3/2)+C1)/x^2

>> x*diff(ysoln,x)+2*ysoln-sqrt(1+x^2)
ans = A big awful mess

>> pretty(simple(ans))
0


In other words, the answer you got in the original post is correct.

Moral: Sometimes Maple (or Mathematica) create a big long mess. Simplification cleans it up, sometimes (as it did in this case).

Usually when I use Maple I am left with a big long mess that Maple can't simplify. I use Maple to check my hand work for stupid errors.
>>mysoln = some simple equation;
>>maplesoln = some big long mess;
>>zerocheck = simple(mysoln-maplesoln)

Maple doesn't make the stupid mistakes I am quite prone to make. On the other hand, Maple is quite stupid about simplifying things.
 
Last edited:
I agree with DH that 'dsolve' is a good tool to use to solve these diffs on maple.
There are also a lot of great tools in maple to simplify answers. If all your getting on maple are big nasty answers, your not using it right.
read up on 'simplify' ,'factor', and 'collect', those are the 3 most common tools i use
 
Thanks... for the tips too!
 
joob said:
There are also a lot of great tools in maple to simplify answers. If all your getting on maple are big nasty answers, your not using it right.
read up on 'simplify' ,'factor', and 'collect', those are the 3 most common tools i use

Don't be insulting. Those tools only go so far. The bottom line is that simplification is not particularly well-defined and is definitely not easy (it is an NP-hard problem). I have run across many problems that neither Maple nor Mathematica can simplify as well as a human can. I have seen many, many more examples in autogenerated code (no human would write a multi-page equation).
 
Sorry, I didnt mean to sound insulting.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K