Problem:(adsbygoogle = window.adsbygoogle || []).push({});

A cylindrical bucket of cross-sectional area A has water in it up to an initial depth of d at t=0. The water has density p, an the gravitational acceleration is g. The water leaks out the bucket through a hole in the bottom with the rate of change of he volume of the water in the bucket proportional to the pressure in the bottom of he bucket, dV/dt=-kP, with k postive constant. Find the volume of the water in the bucket as a function of time.

I tried doing some of it but I'm not sure if I'm doing this right. Can someone help?

dV/dt=-kP = dV/dt= -k(d-g-p) = dV/(d-g-p)=-k dt = integral(dv/(d-g-p))=-kt+C

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Solvng a differential equation

**Physics Forums | Science Articles, Homework Help, Discussion**