Some Practice Questions on Differentiability and Continuity

  • Thread starter Thread starter altcmdesc
  • Start date Start date
  • Tags Tags
    Test
altcmdesc
Messages
64
Reaction score
0
I've got a test coming up and I would like to know if I'm doing this stuff correctly. Thanks!

Homework Statement


1. Consider

<br /> f(x,y) = \left\{<br /> \begin{array}{c l}<br /> \frac{xy}{x^{2}-y^{2}} &amp; x \neq \pm y\\<br /> 0 &amp; x = \pm y<br /> \end{array}<br /> \right.<br />

Is f differentiable at (0,0)?

2. Consider the continuous function

<br /> g(x,y) = \left\{<br /> \begin{array}{c l}<br /> \frac{xy}{\sqrt{x^{2}+y^{2}}} &amp; (x,y) \neq (0,0)\\<br /> 0 &amp; (x,y) = (0,0)<br /> \end{array}<br /> \right.<br />

Find \delta&gt;0 so that |(x,y)|&lt;\delta\Rightarrow|g(x,y)|&lt;10^{-2}

3. Find the derivative of the mapping A\mapsto(I+A^{2})^{-1}.

4. Find N so that |z|&gt;N\Rightarrow|p(z)|=|10z^{10}+9z^{9}+...+2z^{2}+z|&gt;100

5. Suppose S\subset\Re and S is bounded above. Prove that \forall\epsilon&gt;0 \exists y \inS with |supS-y|&lt;\epsilon.

6. If f:\Re^{m}\rightarrow\Re^{n} has Df(a)\neq0, prove that \exists b\in\Re^{m} with f(a) \neq f(b)

2. The attempt at a solution

1. Along the x and y axes f(x,y)=0. Thus \frac{\partial f}{\partial x} = 0 and \frac{\partial f}{\partial y} = 0 at (0,0). From this, the directional derivative in any direction (v_{1}, v_{2}) should be 0. Using the limit definiton gives \lim_{h \rightarrow 0} \frac{\frac{h^{2}v_{1}v_{2}}{h^{2}(v_{1}-v_{2})}}{h} = \lim_{h \rightarrow 0} \frac{\frac{v_{1}v_{2}}{v_{1}-v{2}}}{h}. This limit does not exist for all v_{1}, v_{2}, so f is not differentiable at (0,0).

2. \sqrt{x^{2}+y^{2}}&lt;\delta. Since x&lt;\sqrt{x^{2}+y^{2}}&lt;\delta and y&lt;\sqrt{x^{2}+y^{2}}&lt;\delta, xy&lt;\delta^{2}. Now, |f(x,y)| = |\frac{xy}{\sqrt{x^{2}+y^{2}}}| &lt; |\frac{\delta^{2}}{\sqrt{x^{2}+y^{2}}}| = |\frac{\delta^{2}}{\delta}| = |\delta| =\epsilon. Thus choosing \delta = 10^{-2} works.

3. Let F(A)=I+A^{2} and G(B)=B^{-1}. Then G\circF(A)=(I+A^{2})^{-1}. By the chain rule, D(G\circF(A))(H)=DG(F(A))DF(A)(H)=-(I+A^{2})^{-1}(DF(A)(H))(I+A^{2})^{-1}=-(I+A^{2})^{-1}(AH+HA)(I+A^{2})^{-1}.

4. If |10z^{10}|&gt;|9z^{9}|+|8z^{8}|+...+|z|+100 then |p(z)|&gt;100 follows. We have
|z|^{10}&gt;9|z|^{9}, |z|^10&gt;8|z|^{8}, |z|^10&gt;7|z|^{7},...,|z|^{10}&gt;100 since |z|^{10}&gt;9|z|^{9} \Rightarrow |z|&gt;9 is the most stringent, |z|&gt;9 works.

5. If S is bounded above then \forally\inS y&lt;supS. Thus \exists y_{n} in \overline{S} such that y_{n} \rightarrow supS as n\rightarrow\infty. For this sequence, we have \forall\epsilon&gt;0 \existsN with n&gt;N such that |y_{n}-supS|&lt;\epsilon.

6. From the definition of the derivative at a: \lim_{h \rightarrow 0} \frac{|f(a+h)-f(a)-Df(a)h|}{|h|}=0. Let a+h=b, then \lim_{b \rightarrow a} \frac{|f(b)-f(a)-Df(a)(b-a)|}{|b-a|}=0 \rightarrow \lim_{b \rightarrow a} \frac{|f(b)-f(a)}{|b-a|}-\frac{|Df(a)(b-a)|}{|b-a|}=0. For this to be zero, \lim_{b \rightarrow a} \frac{|f(b)-f(a)}{|b-a|}\geq0 since \frac{|Df(a)(b-a)|}{|b-a|} is bounded as b \rightarrow a. Thus f(b) \neq f(a).
 
Last edited:
Physics news on Phys.org
Are any of these correct?

Especially the proofs?
 
I only looked at number 2... your answer was almost awesome, except that if you have the denominator bounded above, then plugging in that bound minimizes the fraction. For example, what if \sqrt{x^2+y^2 was really \delta^5 which is less than delta for small delta (of course, then xy would be smaller, but you didn't say that, which is why the result breaks down).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top