I can't really speak on how the rationals are dispersed within the reals and irrationals other than to say the rationals are dense within the reals(
http://en.wikipedia.org/wiki/Dense_set). This was explained before in other terms, that in any open interval of the reals, there is a rational.
As to the probability of randomly choosing a rational from the reals, it is VERY unlikely. We can say that the probability of choosing a rational from the reals is equal to the size of the set of rationals over the size of the set of reals. When considering the sizes of sets, or cardinality, there arise different levels of infinity(
http://en.wikipedia.org/wiki/Cardinal_number). The rationals are known as being "countable" and thus equal in size to the natural numbers, these are of size apleph-null or aleph 0, whereas the reals and irrationals are commonly assumed (by the continuum hypothesis,
http://en.wikipedia.org/wiki/Continuum_hypothesis) to be of size aleph 1. Aleph 1 is infinitely larger than aleph-null, so the probability is infinitesimal.
You might want to study infinite sets(
http://en.wikipedia.org/wiki/Infinite_sets). The general concept of infinite sets is prerequisite to (and more approachable than) considering distributions of an infinite set within another. One of my favorite exercises from my proof class was to prove the rationals as being countable (equal in size to the natural numbers) by constructing a one to one function(
http://en.wikipedia.org/wiki/Bijection) between them. You want learn much about distribution by studying infinite sets and the like, but that's mostly because distribution-related stuff is reserved for the upper levels of proof-based math. Specifically, AFAIK, it is first formalized in real analysis with the concept of neighborhoods(
http://en.wikipedia.org/wiki/Neighbourhood_(mathematics)) but not actually generalized to general sets until topology. (Not to be pretentious... This is just my understanding. I've never taken anything above an intro to proof class, so take what I say with a very large amount of salt.

)