- 1,442
- 191
Ok, I have an almost solution, but it fails one requirement at one point for one function
!
Problem: ] Find continuous functions f_{n}: [0,1] \rightarrow [0,\infty),\forall n\in\mathbb{N} such that,
i. f_{n}(x) \rightarrow 0,\forall x\in [0,1] as n \rightarrow \infty,
and
ii. \int_0^1 f_{n}(x)dx \rightarrow \infty, as n \rightarrow \infty,
but such that
iii. g(s):=\mbox{sup} \left\{ f_{n}(s) : n\in\mathbb{N}\right\} = \frac{1}{s} on s\in (0,1] so \lim_{t \rightarrow 0^{+}} \int_t^1 g(s)ds = \infty .
My (almost) Solution: Let
\chi_{A}(x)=\left\{\begin{array}{cc}0,&\mbox{ if }<br /> x \in \mbox{NOT}(A)\\1, & \mbox{ if } x\in A\end{array}\right.
denote the characteristic function of the set A, where \mbox{NOT}(A) is the complement of A.
Put f_{1}(x)=\frac{1}{x} \chi_{(0,1]}(x), and let
f_{n}(x)=\frac{1}{nx} \chi_{(\frac{n-1}{n},1]}(x), for n\geq 2.
Then \left\{ f_{n}(x) \right\} satisfies properties i, ii, and iii, except that f_1 is not continuous (from the left) at x=0.
Please save it!

Problem: ] Find continuous functions f_{n}: [0,1] \rightarrow [0,\infty),\forall n\in\mathbb{N} such that,
i. f_{n}(x) \rightarrow 0,\forall x\in [0,1] as n \rightarrow \infty,
and
ii. \int_0^1 f_{n}(x)dx \rightarrow \infty, as n \rightarrow \infty,
but such that
iii. g(s):=\mbox{sup} \left\{ f_{n}(s) : n\in\mathbb{N}\right\} = \frac{1}{s} on s\in (0,1] so \lim_{t \rightarrow 0^{+}} \int_t^1 g(s)ds = \infty .
My (almost) Solution: Let
\chi_{A}(x)=\left\{\begin{array}{cc}0,&\mbox{ if }<br /> x \in \mbox{NOT}(A)\\1, & \mbox{ if } x\in A\end{array}\right.
denote the characteristic function of the set A, where \mbox{NOT}(A) is the complement of A.
Put f_{1}(x)=\frac{1}{x} \chi_{(0,1]}(x), and let
f_{n}(x)=\frac{1}{nx} \chi_{(\frac{n-1}{n},1]}(x), for n\geq 2.
Then \left\{ f_{n}(x) \right\} satisfies properties i, ii, and iii, except that f_1 is not continuous (from the left) at x=0.
Please save it!
Last edited: