Hi JG, I noticed your link to an earlier (2008 actually!) post of mine which got me curious
JohnnyGui said:
...After looking at marcus's explanation found here:
https://www.physicsforums.com/threads/prove-that-z-v-c.273160/ I concluded that when something is moving away while emitting a particular frequency in the other direction, the frequency would be smaller by a factor of (
(c - v) / c) (let's call
c here the speed of sound)...
so I went back and had a look. I think the main point of that post was that
cosmological redshift is not Doppler shift.
Not in any simple sense we normally think of when we say Doppler effect---the effect associated with some particular speed. Cosmo redshift is not the effect of any particular speed---it is a cumulative effect that builds up over million, sometimes billions, of years.
So it is potentially a bit confusing to have a discussion of Doppler effect in Cosmology forum. You might have more success asking in either General Physics or in the (SR and GR) Relativity forum. There is a nice
relativistic Doppler formula in Special Relativity which you might like if you haven't encountered it yet.
But none of that usual Doppler stuff, based on particular speeds at emission and reception, applies to cosmological redshift. That is "thing one" the most important thing to realize. Anyway you got me curious about what I said when you cited that old 2008 post so I will quote it and have a look:
(BTW I hope it's clear that distance growth, i.e. recession, is not like ordinary motion because
nobody gets anywhere by it everybody just becomes farther apart. So you should never think of expansion cosmology in terms of familiar motion thru surrounding space--it leads to pretty bad confusion.)
==quote from that old post==
You aren't really talking about the cosmological redshift, because that is not the doppler effect of the current recession speed, or the recession speed at the time of emission, or at any other one particular time. the cosmo redshift is determined by the factor by which distances have expanded during the light's travel time. The formula they give you for it, on day one of cosmo class, is 1+z = a(now)/a(then), the ratio of the metric scalefactor now compared to what it was then, when the light was emitted.
So if you were talking about the cosmo redshift you would have totally the wrong formula. But I think what you are really asking about is the DOPPLER EFFECT shift. If z is defined as the fractional increase in wavelength, and v is actual motion away, of the observer from the source, then you could say z = v/c.
That would have nothing much to do with universe expansion, but it could apply to some random motions of neighboring galaxies relative to each other, and stars within galaxies, and stuff like that.
========quote from other guy's earlier========
https://www.physicsforums.com/threads/prove-that-z-v-c.273160/goto/post?id=1965349#post-1965349
... but can someone remind me how you prove mathematically z = v/c? (z is redshift, v is recessional velocity, c is speed of light.)
I realize that this equation only works in a non-relativistic Universe, but nevertheless I'd like to see it.
==========endquote============
As you point out, it isn't true that z = v/c. But for unrelativistic speeds it is nearly right (if we are clear that it is not cosmo redshift, but some small random motion doppler effect that we are talking about)
...
...
...You asked for a nonrelativistic picture. So we can interpret the formula for sound. It's more intuitive, quicker to understand, thinking of frequency. So let c be the speed of sound. Let v be your speed, towards. The frequency you hear as you go towards will be the emitted frequency increased by a factor of (1 + v/c)
You will be meeting the peaks of the waves that much faster, because you are going towards the source.
Frequency higher by a factor of ((c+v)/c) means wavelength shorter by a factor (c/(c+v))
But for small velocities (a small percentage of c) that number is about the same as 1 - v/c.
You know, 1/(1+x) is about the same as 1 - x, for small x.
So for example 5% higher frequency corresponds approximately to 5% shorter wavelength. The reciprocal of 1.05 is not exactly the same as 0.95, but pretty close.
What I've described is why the nonrelativistic doppler shift is v/c, where you the receiver are moving towards the source. And v/c applies both to the fractional increase in frequency and the fractional decrease in wavelength (approximately.)
The story is the same when you are moving away from the source---I just happened to imagine it going towards.
...
Given that intuitive framework can you attach algebraic symbols to the various key quantities and construct a proof with equations that you are happy with? If not, let us know. I or someone will help translate into equations.
I guess you know that the real formula, for the relativistic doppler, is 1+z = sqrt( (c+v)/(c-v))
To tie up loose ends I guess one should notice that for small v/c that is almost the same number as 1 + v/c
==endquote==