Elvz2593
- 5
- 0
Homework Statement
This is a problem I came up with when I was doing something similar in Spivak's Calculus; although a simpler version.
Suppose, we have f(x)=x^3 and g(x)=x^2
find \lim_{x\rightarrow \infty} f(x)/g(x)
Homework Equations
N/A
The Attempt at a Solution
So, I had 2 solutions for it. One says the limit exist, the other one says otherwise,
1. first method came from Spivak's book.
\lim_{x\rightarrow \infty} f(x)/g(x) = \lim_{x\rightarrow \infty} x^3/x^2 = \lim_{x\rightarrow \infty} (x^3/x^3)/(x^2/x^3) = \lim_{x\rightarrow \infty} 1/(1/x)
let h(x)=1 and j(x)=1/x
\lim_{x\rightarrow \infty} f(x)/g(x) = \lim_{x\rightarrow \infty} h(x)/j(x)
\lim_{x\rightarrow \infty} h(x)=1
\lim_{x\rightarrow \infty} j(x)=1/x=0 this implies \lim_{x\rightarrow \infty} h(x)/j(x) does not exist, otherwise \lim_{x\rightarrow \infty} h(x)= (\lim_{x\rightarrow \infty} h(x)/j(x) ) * ( \lim_{x\rightarrow \infty} j(x)) = 0
\lim_{x\rightarrow \infty} h(x) can't both be 1 and 0.
2. the other method.
\lim_{x\rightarrow \infty} f(x)/g(x) = \lim_{x\rightarrow \infty} x^3/x^2 = \lim_{x\rightarrow \infty} x = \infty
One of the solutions has to go. I probably just can't think straight since I have been up all night. Any help will be appreciated, my head is pretty much empty right now.
