1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Space Shuttle orbit velocity

  1. Oct 8, 2007 #1
    1. The problem statement, all variables and given/known data
    2. The space shuttle is orbiting the Earth at a distance of about 200 km from its surface.
    At that distance, the gravitational acceleration is almost the same as that on the
    surface. (a) How long does it take for the shuttle to complete one orbit around the
    Earth? Assume that the orbit is circular. (b) The density of air at 200 km is about
    5 × 10−10kgr m−3. How many orbits will it take for aerodynamic drag to reduce the
    velocity of the shuttle by 10%? The coefficient of aerodynamic drag for the shuttle is
    ' 0.5, the surface area projected along the direction of motion is ' 400 m2, and the
    weight of the shuttle midway through a mission is about one million tons.


    2. Relevant equations
    R=.5DpAv^2

    3. The attempt at a solution
    Ok i got the portion of (a). i got an answer of 88.4413minutes. thats also with a velocity of 7.7887km/s. I just cant get b. thanks for any help.
     
  2. jcsd
  3. Oct 8, 2007 #2

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Where are you getting stuck with (b)? You seem to have the correct equation (assuming D is the drag coefficient).
     
  4. Oct 8, 2007 #3
    i just dont know how that equation is relevant to the time it takes to drop down to 90% of its speed.
     
  5. Oct 8, 2007 #4

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    What does that equation tell you?
     
  6. Oct 8, 2007 #5
    it tells me how to solve for resistive force. i know how to solve for the 2 resistive forces at both speeds, but i dont know how to get the time it takes to drop to the slower speed
     
  7. Oct 8, 2007 #6

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    How about if we write;

    [tex]F_d = m\frac{dv}{dt}[/tex]
     
  8. Oct 8, 2007 #7
    please forgive me, but i really dont see the connection. im sry, maybe im too tired to think straight.
     
  9. Oct 8, 2007 #8

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Okay, explicitly;

    [tex]-\frac{1}{2}D\rho Av^2 = m\frac{dv}{dt}[/tex]

    [tex]\frac{dv}{dt} + \frac{D\rho A}{2m}v^2 = 0[/tex]

    Which is a linear ODE
     
  10. Oct 8, 2007 #9
    where did the m come from? If thats the mass of the space shuttle wouldnt it be a really big number to plug in?
     
  11. Oct 8, 2007 #10

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    The m came from Newton's second law (see post #6). And yes m is going to be large, the question says one million tons, but your velocity and the CSA of the shuttle isn't exactly small...
     
  12. Oct 8, 2007 #11
    so would i have to convert the weight of it to kilograms or anything? also what would i plug in for v? would i plug in Vf-Vi or what?
     
  13. Oct 8, 2007 #12

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    You should convert all quantities to their SI units and you can't just plug the numbers in, you have to solve the differential equation first.
     
  14. Oct 8, 2007 #13
    could you please guide me on what steps i should take to solve this equation. This problem has me completely stumped.
     
  15. Oct 8, 2007 #14

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Okay, from here;

    [tex]-\frac{1}{2}D\rho Av^2 = m\frac{dv}{dt}[/tex]

    By seperation of variables;

    [tex]\int^{0.9v_0}_{v_0} \frac{dv}{v^2} = -\frac{D\rho A}{2m}\int_{0}^{T} dt[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Space Shuttle orbit velocity
Loading...