Space-time fabric distortion measuring

AI Thread Summary
Space-time distortion caused by gravitational waves can be measured through methods like laser interferometry, as utilized by LIGO, which detects tiny changes in distance between mirrors caused by passing waves. When gravitational waves pass through, they stretch and squeeze space, leading to variations in distance that can be measured without acceleration forces affecting rigid structures. The internal forces within materials, such as steel, could potentially break under these conditions if they are unable to adapt to the rapid changes in distance. The measurement techniques rely on the principle that freely floating points will respond differently to gravitational waves than bound objects. Future advancements, such as the LISA project, aim to enhance the detection of these phenomena.
steli
Messages
3
Reaction score
0
Hi, I have a question about a fact that I did't understand, and all the world takes this as it is: How can the space-time distortion, generated by gravitational waves, can be measured? All scientist say that the space is stretched and squeezed, but how much means that, because 1 meter stretched is equal with 1 meter squeezed. I saw a documentary on youtube that said if a collision between 2 neutron stars near Earth (theoretically), will generate gravitational waves that will destroy the Earth. How? at atomic level, breaking the bond between atoms..., this means that the strong and weak nuclear forces or electromagnetic forces are independent from space-time fabric?
Thanks.
 
Astronomy news on Phys.org
All scientist say that the space is stretched and squeezed, but how much means that, because 1 meter stretched is equal with 1 meter squeezed.
But a meterstick stretched may be 1.20 m, and have a problem.
For gravitational waves: if you measure the distance between two freely floating points as a GW goes through, you'll find the distance to be 1.20 m in one millisecond, 80 cm in the next, and so on. That's not a problem, as this distance variation comes without acceleration and thus without any forces. It's the "natural state" of the two points.
It becomes a problem, though, if the points are connected by something rigid, like a steel bar. Steel bars don't want to be 1.20 m long in one ms, and 80 cm in the next. Internal forces will try to keep it at a constant length, accelerating the individual parts away from their "natural" position. These forces could break it. (Theoretically, with very weak steel and very fat neutron stars)
 
But how can you measure the meterstick when the gravity wave passes it.
So you say that the space-time distortion does affect the atomic forces. This could make sense and can explain the stress at atomic level.
At least that I understand.
Thanks.
 
But how can you measure the meterstick when the gravity wave passes it.
There are two possibilities:
1) you take a "meterstick" and listen to its vibrations. If a gravitational wave passes through it, the internal forces will make it start ringing. You can measure that, in principle,
2) You take those freely floating points (mirrors) and measure their distance with a laser beam.
In both cases, what's important is that bound (coherent) objects don't simply follow the changing distances, but instead at least try to stay as they are.
 
Currently, the method to try to detect gravity waves involve laser interferometry. The largest gravity wave detector, LIGO is basically a GIANT laser interferometry lab.

The lasers are several kilometers long and situated perpendicular to each other. They are made to interfere with each other at some point and you get an interference pattern. If a gravity wave passes by, it shrinks or expands (the wavelength of) ONE of the lasers a tiny bit (nano meter scale), and it doesn't affect the other laser. This changes the interference pattern, and that's how you see the gravity wave.
 
LIGO is the short answer, as matterwave noted. By 2020 an even more sophisticated instrument is planned to be deployed. It is called LISA.
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
Both have short pulses of emission and a wide spectral bandwidth, covering a wide variety of frequencies: "Fast Radio Bursts (FRBs) are detected over a wide range of radio frequencies, including frequencies around 1400 MHz, but have also been detected at lower frequencies, particularly in the 400–800 MHz range. Russian astronomers recently detected a powerful burst at 111 MHz, expanding our understanding of the FRB range. Frequency Ranges: 1400 MHz: Many of the known FRBs have been detected...
Back
Top