syj
- 53
- 0
Homework Statement
I have
<br /> J=\begin{bmatrix}<br /> \frac{\pi}{2}&0&0\\<br /> 1&\frac{\pi}{2}&0\\<br /> 0&1&\frac{\pi}{2}\\<br /> \end{bmatrix}<br />
I need to find \sin(J) \text{ and } \cos(J) \text{ and show that } \sin^{2}(J)+\cos^{2}(J)=I<br />
Homework Equations
The Attempt at a Solution
I have the following:
<br /> \sin(J)=<br /> \begin{bmatrix}<br /> 1&0&0\\<br /> 0&1&0\\<br /> 0&0&1\\<br /> \end{bmatrix}<br />
and
<br /> \cos(J)=<br /> \begin{bmatrix}<br /> 0 & 0 & 0\\<br /> 0 & 0 & 0\\<br /> 0 & 0 & 0\\<br /> \end{bmatrix}<br />
I don't know if this is correct. All the questions I have examples of have more than one eigenvalue, this one only has one eigenvalue.