Speed of a transverse on a pulley

AI Thread Summary
To determine the speed of a transverse wave on a rope attached to a tuning fork vibrating at 120Hz, the key is to calculate the tension in the rope caused by the 1.50kg mass. The downward force from the mass is 9.81N, which contributes to the tension necessary for wave speed calculation. The linear mass density of the rope is 0.055kg/m, and the wave speed can be derived from the tension using the appropriate wave speed formula. The answer provided in the textbook is 16.3m/s, confirming the calculations align with the expected results. Understanding the relationship between tension and wave speed is crucial for solving similar problems.
Andrew Jacobson
Messages
6
Reaction score
0

Homework Statement


Hi, I encountered a problem whilst doing problems involving transverse waves. If somebody could give me a pointer I would appreciate it. The question is:

"One end of a horizontal rope is attached to a prong of an electrically driven tuning fork that vibrates the rope transversely at 120Hz. The other end passes over a pulley and supports a 1.50kg mass. The linear mass density of the rope is 0.055kg/m. What is the speed of a transverse wave on rope?"

The answer in the book is 16.3m/s.

Homework Equations

The Attempt at a Solution


If I'm honest I'm struggling to even start. I figure that you have to balance the forces, where the downward force would be 9.81*(1.5+0.055L)N where L is the length of the rope and perhaps you can relate that to the power of the tuning fork and work it out from there? A pointer would be lovely. Thanks.
 
Physics news on Phys.org
Nah, there is an expression for the speed of a wave as a function of the tension in a rope. Find it (in your textbook or in your notes, for instance) and you're done.

Tuning fork power would have been provided if that was needed for the exercise. Pulley and weight only serve to get the tension.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top